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THERMAL AND ELECTRONIC TRANSPORT 
PROPERTIES OF Z I N C  ANTIMONIDE 

PAUL JOHN SHAVER 

This r epor t  is  i d e n t i c a l  t o  a thes i s  submitted t o  the  Department of Electrical 
Engineering, M.I:T., Apr i l  20, 1965, i n  p a r t i a l  f u l f i l l m e n t  of t he  requirements 
f o r  t h e  degree of Doctor of Science. 

ABSTRACT / k$ -  343 74 
The prepara t ion  of s i n g l e  c r y s t a l s  of p-type ZnSb is des i r ibed .  

zone r e c r y s t a l l i z a t i o n  method was used with an antimony r i c h  molten zone. 
gas was added t o  the sea l ed  growth ampoule t o  suppress decomposition during 
c r y s t a l  growth. 
wi th  A l ,  Se,  o r  I n  f a i l e d  t o  produce n-type ZnSb. 
making electrical  and thermal contacts t o  t h i s  material. 

A h o r i z o n t a l  
Argon 

Copper doping was used t o  con t ro l  t he  ho le  concentration. Doping 
Methods are described f o r  

A r e v e r s i b l e  inc rease  i n  t h e  hole  concent ra t ion  of undoped, p-type c r y s t a l s  
was found t o  occur under annealing a t  e l eva ted  temperatures (6OOC t o  24OoC) i n  
i n e r t  atmospheres. With s to rage  a t  room temperature, t h e  ho le  concent ra t ion  w a s  
found t o  r e l a x  towards the  pre-annealing ho le  concentration. A p l a u s i b l e  
explana t ion  i s  advanced f o r  t h i s  phenomenon. 

The following measurements were made on c a r e f u l l y  o r i en ted ,  p-type s i n g l e  
c r y s t a l  samples: 
e f f e c t  and electrical r e s i s t i v i t y  between 77.3 and 325'K; and magnetoresistance 
measurements a t  77.3OK. 

thermoelec t r ic  power and thermal conduct iv i ty  a t  O°C; H a l l  

These measurements i n d i c a t e  a s l i g h t  (12%) an iso t ropy  i n  the thermal 
conduct iv i ty ,  no anisotropy i n  the thermoelec t r ic  power and no anisotropy i n  t h e  
H a l l  e f f e c t .  
It w a s  found t h a t  0 

Considerable anisotropy was measured i n  the  e l e c t r i c a l  conduct iv i ty .  
= 1.5 aa = % b o b ,  approximately. 

C 

For thermoelec t r ic  app l i ca t ions ,  the h ighes t  f i g u r e  of merit i s  obta ined  
wi th  thermal and e l e c t r i c a l  cur ren ts  d i r ec t ed  along t h e  c-axis of t he  c r y s t a l .  
A t  O°C, t he  maximum thermoelec t r ic  f i g u r e  of merit was found t o  be 0.74~10-3(OK)-~. 
The thermal conduct iv i ty  a t  t h i s  doping l e v e l  was  0.037 watts/cm-'K which is  
about twice the  value f o r  p o l y c r y s t a l l i n e  ZnSb. 

The experimental ly  observed r e s u l t s  of t h e  galvanomagnetic measurements are 
shown t o  be i n  e x c e l l e n t  agreement w i t h  a model f o r  t h e  valence band conduction 
processes  which assumes t h a t :  a s i n g l e  general  e l l i p s o i d  descr ibes  su r faces  of 
cons tan t  energy i n  r ec ip roca l  space and t h a t  t h e  r e l axa t ion  time i s  e i t h e r  a 
scalar func t ion  of energy o r  a tensor of cons tan ts  wi th  a f ac to rab le  energy 
dependence. 
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CHAPTER 1 

LITERATURE SURVEY, SUMMARY OF 
. 

PREVIOUSLY DETERMINED PROPERTIES 
AND OUTLINE OF EXPERfMENTAL 

1.1 LITERATURE SURVEY 

Modern i n t e r e s t  i n  the  thermoelectr ic  p rope r t i e s  

z inc antimonide began with the  researches of Maria Te 

OF ZnSb 
WORK 

and appl ica t ions  of 

kes i n  1936. ('1 In  

1947, Telkes") measured a conversion e f f i c i e n c y  of 5.6% f o r  a z inc  antimonide 

versus constantan thermoelectr ic  power generator  t h a t  operated between 4OO0C 

and O°C. 

d i f f e r e n t i a l  f o r  couples of ZnSb versus  constantan and ZnSb versus a bismuth- 

t i n  a l loy .  

of s to i ch iomet r i c  charges and vacuum cas t ing .  

and bismuth were added t o  lower t h e  e l e c t r i c a l  r e s i s t i v i t y  and decrease the  

b r i t t l e n e s s  of the  a l loy .  It was found necessary t o  anneal the  a l loy  s ince  

the thermoelectr ic  power and e l e c t r i c a l  r e s i s t i v i t y  of the c a s t  samples were 

va r i ab le  when the  couples were operated a t  e leva ted  temperatures. The anneal- 

Telkes (3),  i n  1954, reported e f f i c i e n c i e s  versus opera t ing  temperature 

Her z inc  antimonide elements were prepared by the  vacuum melt ing 

Small amounts of t i n ,  s i lver ,  

i ng  was c a r r i e d  out  a t  a temperature of 48OoC f o r  24 hours. I n  1955 (4) , 
Telkes summarized h e r  work and noted t h a t  these a l loys  a r e  s t a b l e  up t o  45OoC 

when properly annealed. Various combinations of addi t ives  y ie lded  thermoelec t r ic  

powers of 200 t o  300 vV/"C,  e l e c t r i c a l  r e s i s t i v i t i e s  on the  order  of 2 x lo-' 
ohm-cm, and thermal conduct ivi t ies  of about 0.014 watt/cm - 'C. 

I n  Germany, J u s t i  and h i s  co-workers have been looking i n t o  the  thermo- 

e l e c t r i c  p rope r t i e s  of homogeneous, po lyc rys t a l l i ne  ZnSb and a l loys  of ZnSb 

and CdSb, i .e . ,  (ZnxCdl - ,Sb). 

e l e c t r i c  power of po lycrys ta l l ine  ZnSb can be represented by: 

I n  1960, J u s t i " )  reported t h a t  the  thermo- 

a = 629 - 200 loglo u 
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where a i s  the  thermoelectr ic  power i n  W / ' K  and u i s  the  electrical  conduct ivi ty  

i n  (ohm-centimeters). J u s t 1  a l s o  concludes t h a t  Cu i s  the  b e s t  acceptor  -1 

impurity.  He was no t  ab le  t o  prepare n-type ZnSb. J u s t i  a l s o  presents  t he  

r e s u l t s  of h i s  measurements of the  temperature dependence of t h e  thermoelec t r ic  

power between 4.2 O K  and 350 O K .  

I n  1961, J u s t i  and h i s  co-workers reported (6' 7, measurements of t h e r m -  

e lectr ic  power, e l e c t r i c a l  conduct iv i ty ,  Hall c o e f f i c i e n t ,  thermal conduct iv i ty  

and Nernst-Ettingshausen c o e f f i c i e n t  on homogeneous, p o l y c r y s t a l l i n e  ZnSb a t  

temperatures between 4.2 and 300°K. They d id  n o t  i n t e r p r e t  t h e i r  r e s u l t s  i n  

terms of a model for  the t r anspor t  processes  i n  ZnSb. 

J u s t i  and Newman descr ibe  t h e i r  work on p o l y c r y s t a l l i n e  ZnxCdl - xSb i n  a 

They found t h a t  t h e i r  samples had U.S. pa ten t  which was granted i n  1962(8'. 

t o  be  annealed a t  460-500°C i n  o rde r  t o  avoid the  high temperature 

i n s t a b i l i t i e s  t h a t  were a l s o  repor ted  by Telkes. 

Recently,  J u s t i ,  Rasch and S ~ h n e i d e r ' ~ )  have repor ted  on the  prepara t ion  

and t r a n s p o r t  p roper t ies  of s i n g l e  crystals of ZnSb. The c r y s t a l s  were grown 

by the  seeded, hor izonta l  zone r e c r y s t a l l i z a t i o n  process  t h a t  was used by 

Kot and Kretsu (15) and Eisner ,  Mazelsky and Ti l ler .  (22) Resu l t s  are presented 

f o r  the thermoelec t r ic  power as a func t ion  of e lectr ical  conduct iv i ty  and f o r  

the Hall e f f e c t ,  e lec t r ica l  conduct iv i ty ,  and t r ansve r se  magnetoresistance as 

func t ions  o f  temperature between room temperature and 1.9 OK. Evidence of 

impuri ty  band conduction i n  undoped crystals  below about 25 O K  i s  noted. 

Copper was used as an acceptor  impurity.  Ga and Te were used as donor 

impur i t i e s  i n  unsuccessful a t tempts  t o  produce n-type ZnSb. 

t he  a u product fo r  ZnSb s i n g l e  c r y s t a l s  was s i g n i f i c a n t l y  g r e a t e r  than t h a t  

It w a s  found t h a t  

2 

of  p o l y c r y s t a l l i n e  ZnSb. However, t he  thermal conduct iv i ty  of  t h e  s i n g l e  
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c r y s t a l l i n e  material w a s  a l s o  increased t o  about twice the  value f o r  poly- 

crys  t a1 l ine ZnSb . 
Unfortunately, t h i s  work makes no mention of t he  c rys t a l log raph ic  

o r i e n t a t i o n  of the  measurement samples. Thus, t he  an iso t ropies  of the  e l e c t r i c a l  

and thermal proper t ies  were no t  determined. A knowledge of these an iso t ropies  

i s  needed i n  order  t o  i n f e r  the  nature  of the  energy band s t r u c t u r e  of ZnSb 

as w e l l  as t o  completely determine the  p o t e n t i a l  of t h i s  mater ia l  f o r  thermo- 

e l e c t r i c  energy conversion appl icat ions.  

reported the  use of a HF, H 0 and g lycero l  2 2  In  1962, Hruby and Kasper 

e t ch  t o  both pol i sh  and decorate  ZnSb and CdSb sur faces .  A yea r  later, 

Hruby ("I and co-workers described the  Czochralski growth of ZnSb s i n g l e  

c r y s t a l s .  

electrical  conduct iv i t ies  on the  order  of 1.5 (Socm)-l, H a l l  mob i l i t i e s  on the  

o rde r  of 300 c m  /volt-sec and hole d e n s i t i e s  on the  order  of 3 x 10 

were reported.  

Pul l ing  speeds va r i ed  between 6 t o  15 mm/hour. Room temperature 

2 16 cm-3 

P i l a t  and h i s  co-workers i n  Russ ia  have t r i e d  t o  f i n d  thermoelec t r ica l ly  

optimum z inc  and cadmium concentrat ions f o r  ZnxCd Sb(12p13). They worked 1-x 

with vacuum c a s t  po lyc rys t a l l i ne  samples. It w a s  found t h a t  the  apparent 

thermal ac t iva t ion  energy, thermoelectr ic  power, H a l l  c o e f f i c i e n t ,  and thermal 

conduct ivi ty  exhib i ted  a r e l a t i v e  maximum and e l e c t r i c a l  conduct ivi ty  an 

absolu te  minimum when the  molecular composition of t h e i r  a l loy  was 50% CdSb 

and 50% ZnSb. Most measurements were c a r r i e d  out  at 13OoC.  The authors  

suggest  t h a t  near  the  1:l composition, a chemical compound ZnCdSb2 i s  formed. 

However, Miksovsky e t  al.,  (I4) did no t  observe ZnCdSb2 i n  t h e i r  work on the  

growth of s i n g l e  c r y s t a l s  of ZnxCdl-xSb. 

Several  Russian and American workers have reported t h e i r  work with s i n g l e  
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c r y s t a l s  of ZnSb. I n  general ,  ava i l ab le  r epor t s  b r i e f l y  descr ibe the  c r y s t a l  

growing process and give the  r e s u l t s  of simple measurements of thermoelectr ic  

power, H a l l  coe f f i c i en t  and e l e c t r i c a l  conduct ivi ty  versus temperature. In  

1958 Kot and Kretsu (15) obtained s i n g l e  c r y s t a l s  f o r  seed purposes by the  

Bridgeman method. Small pieces of these  c r y s t a l s  with a d e f i n i t e  o r i e n t a t i o n  

were then used as seeds f o r  growing l a r g e r  s i n g l e  c r y s t a l s  by a ho r i zon ta l  

zone melting method i n  evacuated Pyrex test tubes. Two planes of easy 

cleavage were observed but  not  i d e n t i f i e d  c rys ta l lographica l ly .  The H a l l  co- 

e f f i c i e n t ,  e l e c t r i c a l  conduct ivi ty  and thermoelec t r ic  power were measured over 

100 t o  500 O K  i n  two d i rec t ions  normal t o  each of the  plans of easy cleavage 

and i n  a t h i r d  d i r ec t ion  t h a t  was perpendicular  t o  these two. As was expected 

( the  un i t  c e l l  of ZnSb is  orthorhombic), the  above measured electrical  

parameters were anisotropic .  It was found t h a t  annealing the  c r y s t a l s  above 

2OO0C a f fec t ed  t h e  t ranspor t  parameters. For example, a f t e r  anneal ing f o r  

20 hours a t  25OoC the  e l e c t r i c a l  conduct ivi ty  of a sample increased 2-3 times 

but  the e l e c t r i c a l  conduct ivi ty  slowly decreased with time when the  c r y s t a l s  

were kept  a t  room temperature, In  general ,  these  workers observed t h a t  t h e i r  

c r y s t a l s  were p-type with a c a r r i e r  concentrat ion of about 1016cm-3, and had 

an energy gap of about 0.6 e v  which was deduced from the  temperature dependence 

of the  Hal l  coef f ic ien t .  Their c r y s t a l s  exh ib i t ed  the  onset  of i n t r i n s i c  

conduction a t  340"K, and exhib i ted  the following conduct iv i t ies :  

I 

I 

u = 3.8, u = 4.6, u = 2.8 11 22 33 
-1 (ohm-centimeters) . A t  350°K, the  following thermoelec t r ic  powers were 

observed: before  annealing, a = 770, a22 = 790, a33 = 740 pV/OK a f t e r  11 

annealing, a = 470, a = 510, a33 = 440 V / " K .  11 22 
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. 

Since the  absolute  c rys ta l lographic  o r i e n t a t i o n s  of the  samples were 

unknown, the  apparent an iso t ropies  i n  the  above q u a n t i t i e s  cannot be r e l a t e d  

t o  d e f i n i t e  p r i n c i p a l  axes i n  ZnSb. 

American workers mainly have approached the  inves t iga t ion  of ZnSb from 

the  po in t  of view of i t s  being ju s t  one member of a c l a s s  of group 1 1 - V  semi- 

conductors. 

of the  t r anspor t  p rope r t i e s  of ZnSb. 

Hence, an undivided e f f o r t  has not  been put  i n t o  the  inves t iga t ion  

In  1960, Stevenson (16) reported the  r e s u l t s  of cyclotron resonance 

18 -3 experiments on p-type ZnSb with a ho le  concentrat ion of 4 x 10 cm . He 

observed a s i n g l e  resonance due t o  carriers of undent i f ied  s ign  of charge. 

H i s  da t a  w a s  cons i s t en t  with a s ing le  extremum energy band model with an 

almost sphe r i ca l  energy band. 

c r y s t a l s  used by Stevenson were pulled from a melt. 

,, 

He observed similar r e s u l t s  i n  CdSb. The s i n g l e  

In  the  same year ,  Turner, e t  al . ,  (17) reported some of the  physical  

p rope r t i e s  of s eve ra l  11-V semiconductors (ZnjAs2, ZnAs2,  ZnSb, Cd As CdAs2 3 2’ 

and CdSb). Zinc antimonide s ing le  c r y s t a l s  were pul led  from rnelts conta in ing  

29-311 z inc  by weight. 

c a r r i e r  concentrat ion of about 4 x 1 O I 8  cm3. 

mobil i ty  w a s  10 cm /volt-sec.  The energy gap was est imated t o  be 0.53 e v  

from o p t i c a l  absorption data.  I n  a second paper (I8) (1961), these  authors  

f u r t h e r  summarize the  e l e c t r i c a l  and o p t i c a l  p rope r t i e s  of 11-V compounds. 

The r e su l t i ng  s i n g l e  c r y s t a l s  were p-type wi th  a 

Tlie room temperature H a l l  

2 

In  1961, Si lvey e t  al. (19) described the  p u l l i n g  of s i n g l e  c r y s t a l s  of 

They observed t h a t  ZnSb forms p e r i t e c t i c a l l y  a t  546’C. t he  11-V compounds. 

S ingle  c r y s t a l s  were pul led  from Zn-Sb melts containing 29-31% Zn by weight. 

Since the  1 1 - V  compounds which were grown exhib i ted  thermal d i s soc ia t ion ,  

c r y s t a l  p u l l i n g  was c a r r i e d  out  i n  s ea l ed  qua r t z  tubes under a pressure  of the 
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more v o l a t i l e  d i ssoc ia t ion  product. 

H i  rayama has inves t iga t ed  the  thermal decomposition of ZnSb. Zinc was 

found t o  be the  v o l a t i l e  species .  A hea t  of formation f o r  ZnSb of:  . 
AH' = - 3.55 5 1 kcal/mole 

i s  obtained from h i s  data on the  h e a t  of d i ssoc ia t ion .  

Hansen (21) presents the  phase diagram f o r  the  zinc-antimony b inary  system. 

Eisner  e t  al .  (22) descr ibed a zone r e c r y s t a l l i z a t i o n  technique which 

they used t o  grow s i n g l e  c r y s t a l s  of ZnSb which were descr ibed as being of 

"good qual i ty" .  Single c r y s t a l s  almost 4 inches long were grown i n  sealed 

vycor tubes by moving a molten antimony-rich zone along a charge of s to ich-  

iomet r ic  composition headed by a s i n g l e  c r y s t a l  of ZnSb. The c r y s t a l s  were 

q u i t e  b r i t t l e ,  cleaving r ead i ly  along the  (100) plane,  occas iona l ly  along the  

(010) plane and ra re ly  along the  (001) plane.  Simple e l e c t r i c a l  measurements 

on a s i n g l e  c rys t a l  i n  a d i r e c t i o n  perpendicular  t o  <LOO>, at 23" t o  <010> 

and 67" t o  <001> yielded a thermoelec t r ic  power t h a t  increased monotonically 

from 420 pV/OK a t  -2OOOC t o  570 IIV/"K a t  + 50'C. I n t r i n s i c  conduction 

became dominant a t  10°C. Hall measurements i nd ica t ed  a p-type carrier con- 

cen t r a t ion  of about 10 cm and an energy band gap of 0.49 ev. In  the  

e x t r i n s i c  range, the Hall constant  was about 200 cm /coulomb and the  room 

temperature mobility w a s  about 500 c m  /vol t -sec and inc reas ing  t o  2000 cm / 

16 -3 

3 

2 2 

volt -sec at  1 0 0 ° K .  

I n  1964, Zavetova (23) published a s h o r t  no te  descr ib ing  the  r e s u l t s  of 

room temperature op t i ca l  transmission experiments on t h i n  a, b and c plane 

samples of ZnSb. The c r y s t a l s  were prepared by the  Czochralski technique 

and had a hole  density of about 3 x me3. A room temperature o p t i c a l  

energy gap of  0.480 ev  was obtained. This value w a s  independent of the  
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plane  of p o l a r i z a t i o n  of t he  l i g h t .  Some evidence f o r  an i n d i r e c t  energy gap 

was obtained. 

Also i n  1964, Komiya, Xasumoto and Fan (24) published t h e  r e s u l t s  of more 

complete o p t i c a l  absorp t ion  s tud ie s  on ZnSb. Brief d a t a  on t h e  temperature 

dependence ( 7 7  t o  34OoK) and anisotropy of t h e  Hal l  m o b i l i t i e s  ( u  > u  > 

was included. Absorption edge energy threshcIds of 0.50 (300°K), 0.59 (77'K) 
c a %) 

and 0.61 (4.2'K) were obtained independent of po la r i za t ion .  Evidence f o r  an 

i n d i r e c t  energy gap was noted. The crystals were prepared by p u l l i n g  from 

16 -3 t h e  melt. The apparent ho le  concentrations were on t h e  o rde r  of 10 c m  . 
I n  1964, Carter and Mazelsky (25) published t h e  r e s u l t s  of an inves t ig-  

a t i o n  i n t o  the  c r y s t a l l o g r a p h i c  s t r u c t u r e  and chemical bonding of ZnSb. 

The i r  work supersedes t h a t  of Almin(26) and Toman ( 2 7 ) .  I n  add i t ion  t o  

r e f i n i n g  the  previously determined c r y s t a l  s t r u c t u r e ,  t hese  workers 

t h e o r e t i c a l l y  i n f e r  t h a t  ZnSb i s  an e l e c t r o n  t r a n s f e r  compound with Zn 

having a valence of t h r e e  and Sb" having a valence of four .  

-1 

This i n t e r -  

p r e t a t i o n  of the  valence scheme i s  i n  agreement wi th  the  observations of 

In  1962, F ros t  e t  al. (29) b r i e f l y  presented  observa t ions  on the  e f f e c t s  

of n u c l e a r  r e a c t o r  i r r a d i a t i o n  on t h e  e lec t r ica l  p r o p e r t i e s  of ZnSb. The 

damage incu r red  was p r i n c i p a l l y  due  t o  f a s t  neutrons.  

Khartsiev(30) has appl ied  group theory t o  t h e  ZnSb and CdSb c r y s t a l  

s t r u c t u r e  and has obta ined  q u a l i t a t i v e  p red ic t ions  of the  symmetry s t r u c t u r e  

of the  energy bands. F r e i  and Ve l i t sk i  '31) have c r i t i c i z e d  some of the  

ana logies  t h a t  Kharts iev drew i n  h i s  work. 
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1.2 ZnSb - A SUMMARY OF PREVIOUSLY ESTABLISHED PHYSICAL PROPERTIES 

Table 1.1 presents  a summary of the  previously e s t ab l i shed  phys ica l  

p rope r t i e s  of zinc antimonide. 

wi th  c r y s t a l  growth. 

were made t o  cha rac t e r i ze  the  s i n g l e  c r y s t a l s .  The 1960 work of Kot and 

Kretsu (I5) does give some information on an i so t rop ie s  i n  the  Hall e f f e c t ,  

e lec t r ica l  conduct ivi ty  and thermoelectr ic  power. However, t h e  absolu te  

o r i e n t a t i o n  of the c r y s t a l s  w a s  no t  e s t ab l i shed ,  The more recent  work of 

Jus ti, Rasch and S ~ h n e i d e r ' ~ ) ,  p resents  r e s u l t s  on measurements of e lec t r ica l  

conduct ivi ty ,  H a l l  e f f e c t ,  magnetoresistance,  and thermoelec t r ic  power for 

a number of acceptor doping l e v e l s  and a temperature range of 1.9'K t o  

room temperature. 

conduct ivi ty  i s  a l so  included. However, a l l  of t h i s  work w a s  done on 

Much of the  e a r l y  work w a s  p r imar i ly  concerned 

Only a few measurements of e lec t r ica l  t r anspor t  p rope r t i e s  

A measured value f o r  the  room temperature thermal 

apparent ly  unoriented s i n g l e  c r y s t a l  samples s ince  no mention i s  made of 

an i so t rop ie s .  

mainly with op t i ca l  absorpt ion measurements i n  ZnSb. 

t he  anisotropy of the H a l l  mobi l i ty  i n  the  temperature range of 77 t o  

350°K was published i n  t h i s  paper. 

1 .3  OUTLINE OF EXPERIMENTAL WORK 

The recent  work of Komiya, Masumoto and Fan ( 2 4 )  dea l s  

A determinat ion of 

The preceding l i t e r a t u r e  survey and summary i n d i c a t e s  t h a t  t he  r e s u l t s  

of a number of bas ic  t r anspor t  measurements are needed before  z inc  antimonide 

can be character ized i n  fundamental terms. In  p a r t i c u l a r ,  a determinat ion 

of the an iso t ropies  i n  the  e lec t r ica l  conduct iv i ty ,  Hal l  e f f e c t ,  thermo- 

e l ec t r i c  power and magnetoresistance effects  i s  needed t o  i n f e r  d e t a i l s  of 

t he  energy band s t ruc tu re .  A determinat ion of t h e  anisotropy of the thermal 

conduct iv i ty  is needed t o  completely eva lua te  t h e  thermoelec t r ic  app l i ca t ions  
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p o t e n t i a l  of ZnSb s i n g l e  c r y s t a l s .  

To obta in  these  goals,  the following body of experimental  work w a s  

completed. 

1.3.1 Mater ia l s  Preparat ion 

1.3.1.1 Single  crystal growth 

When t h i s  i nves t iga t ion  began, i n  the  Spring of 1963, z inc  antimonide 

s i n g l e  c r y s t a l s  t h a t  were prepared  by the  ho r i zon ta l  zone r e c r y s t a l l i z a t i o n  

technique had s i g n i f i c a n t l y  grea te r  Hal l  mob i l i t i e s  than Czochralski grown 

material. Hence, t he  hor izonta l  zone r e c r y s t a l l i z a t i o n  technique was used 

t o  prepare la rge  s i n g l e  c r y s t a l s  of ZnSb. 

1.3.1.2 Control of c a r r i e r  concentration 

Zinc antimonide i s  p-type as grown. S i lve r ,  gold and copper a r e  

e f f e c t i v e  p-type doping agents. There i s  some evidence (32) t h a t  copper 

has the  g rea t e s t  s o l u b i l i t y  l i m i t  of the th ree  i n  ZnSb. Hence, copper 

was used t o  cont ro l  t he  hole  concentration i n  ZnSb. Unsuccessful attempts 

were made t o  produce n-type ZnSb. Aluminum, selenium and indium were used 

a s  chemical dopants. 

1.3.2 Inves t iga t ion  of Thermal I n s t a b i l i t i e s  

It has been reported t h a t  the e l e c t r o n i c  t ranspor t  p rope r t i e s  of ZnSb 

change with t i m e  a t  temperatures t h a t  general ly  l i e  above 100 t o  20OoC. 

I n  order  t o  apparent ly  e l imina te  these changes, i t  i s  known t h a t  i t  is 

necessary t o  anneal ZnSb thermoelements a t  temperatures above the  des i red  

opera t ing  temperature. This i n s t a b i l i t y  appears both i n  po lyc rys t a l l i ne  

and s i n g l e  c r y s t a l  material. Th i s  i n s t a b i l i t y  has been recorded through 

anneal ing experiments on the  s i n g l e  c r y s t a l s  t h a t  have been used i n  t h i s  

i nves t iga t ion .  A reasonable model has been advanced which q u a l i t a t i v e l y  



-14- 

accounts f o r  the  observed behavior. 

1.3.3 Transport Measurements 

The following measurements have been made on c a r e f u l l y  o r i en ted  s i n g l e  

c r y s t a l  specimens of  ZnSb. The degree of anisotropy was determined f o r  each 

quan t f t y  . 
1.3.3.1 E l e c t r i c a l  conduct ivi ty  

This was measured over the  temperature range of 77 t o  320°K on p-type 

16 c r y s t a l s  with severa l  ho le  concentrat ion levels t h a t  ranged from 2 x 10 

1.3.3.2 Hall e f f e c t  

This was measured under the  same condi t ions as those ou t l ined  above 

f o r  the  e l e c t r i c a l  conduct ivi ty .  The magnetic f i e l d  dependence of the  H a l l  

e f f e c t  was observed. 

1.3.3.3 Magnetoresistance 

This w a s  extensively measured a t  77°K ( l i q u i d  n i t rogen)  on a l i g h t l y  

doped copper c r y s t a l  (p = 4 x ~ m - ~ ) .  Some measurements were a l s o  

made on undoped p-type s i n g l e  c r y s t a l s .  The magnetic f i e l d  dependence of 

the  magnetoresistance was observed. 

1.3 .3 .4  Thermoelectric power 

This was measured on p-type s i n g l e  c r y s t a l s  which had a v a r i e t y  of 

doping leve ls .  Measurewnts were made a t  0°C.  

1.3.3.5 Thermal conduct ivi ty  

This was measured on p-type s i n g l e  c r y s t a l s  which had a v a r i e t y  of 

doping leve ls .  Measurements were made a t  O'C. 
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1.4 THEORETICAL DEVELOPMENTS 

2h 

p o i n t  group. The zero elements of the phenomenological t r anspor t  tensors 

are der ived  from c r y s t a l  symmtry considerations. Elements up through those 

of 4th order  i n  the  magnetic f i e l d  s t r e n g t h  are considered. 

Appendix 1 deals  with macroscopic symmetry cons idera t ions  i n  t h e  D 

Appendix 2 presents  a t h e o r e t i c a l  de r iva t ion  of the e l e c t r o n i c  t r anspor t  

c o e f f i c i e n t s  of an energy band extremum t h a t  has t h e  shape of a general  

e l l i p s o i d .  This de r iva t ion  proceeds from a s o l u t i o n  of the Boltzmann equation 

i n  the  r e l axa t ion  time approximation. 

t o  have the same syrmaetry as the energy band extremum. 

magnetic f i e l d s  is  assuwd.  Fermi-Dirac s ta t is t ics  are assumed. Analy t ica l  

expressions are presented f o r  the thermoelec t r ic  power, the e l e c t r o n i c  (hole) 

con t r ibu t ion  t o  the thermal conductivity,  the Lorentz numbers, t he  zero magnetic 

f i e l d  electrical r e s i s t i v i t y ,  the H a l l  c o e f f i c i e n t s  and the magnetoresistance 

c o e f f i c i e n t s .  

The t enso r  r e l axa t ion  time i s  assumed 

The limit of low 
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CHAPTER 2 

SINGLE CRYSTAL AND MEASUREMENT SAMPLE PREPARATION 

2.1 INTRODUCTION 

ZnSb forms by a p e r i t e c t i c  r eac t ion  from a s to ich iometr ic  m e l t  (1) . Hence, 

i t  is d i f f i c u l t ,  i f  no t  impossible, t o  prepare l a rge  s i n g l e  c r y s t a l s  by the  usual 

c r y s t a l  growing techniques. 

c r y s t a l s  should be grown from an antimony-rich m e l t  which has i t s  l iqu idus  

temperature between the p e r i t e c t i c  temperature, 546OC, and the  e u t e c t i c  temperature, 

505OC. 

The binary phase diagram") ind ica t e s  t h a t  s i n g l e  

Kot and Kretsu") were the f i r s t  t o  grow l a rge  s i n g l e  c r y s t a l s  of ZnSb. 

They used a hor izonta l  zone r e c r y s t a l l i z a t i o n  technique with an antimony r i c h  

molten zone. 

technique t o  produce l a rge  s i n g l e  c r y s t a l s .  J u s t i  e t  al. have recent ly  reported 

Eisner,  Mazelsky and T i l l e r ( 3 )  independently used the  same 

the growth of la rge  ZnSb s i n g l e  c r y s t a l s  by t h i s  technique (4) . 
Another way t o  produce la rge  ZnSb s i n g l e  c r y s t a l s  is  t o  p u l l  them 

(Czochralski technique) from an antimony r i c h  melt. 

e t  a l .  '6) and Komiya e t  a l .  ( 7 )  have produced l a rge  s i n g l e  crystals of ZnSb by 

the  Czochralski technique. 

Turner e t  a l .  (5) ,  Hruby 

A t  the  t i m e  t ha t  t h i s  work was begun (Spring 19631, the  ho r i zon ta l  zone 

r e c r y s t a l l i z a t i o n  grown c r y s t a l s  had s i g n i f i c a n t l y  h igher  H a l l  mob i l i t i e s  than 

the  Czochralski grown material .  Hence, the  ho r i zon ta l  zone r e c r y s t a l l i z a t i o n  

technique was used t o  prepare the  s i n g l e  c r y s t a l s  which were used i n  t h i s  

inves t iga t ion .  

This chapter  describes the preparat ion,  doping, growth, e tch ing ,  and 

mechanical c u t t i n g  of ZnSb s i n g l e  c r y s t a l s .  

and thermal contacts  t o  t h i s  mater ia l  a r e  a l s o  discussed. 

Methods f o r  making e l e c t r i c a l  
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2.2 EXPERIMENTS WITH THE BRIDGMAN CRYSTAL GROWTH TECHNIQUE 

Crys ta l  growth w a s  attempted in a Bridgman furnace(8) with the  i n t e n t  of 

producing ZnSb seed c rys t a l s .  These seed c r y s t a l s  were t o  be used t o  nuc lea te  

melts i n  a ho r i zon ta l  zone r e c r y s t a l l i z a t i o n  growth process. The p e r i t e c t i c  

horizontal ' ')  on the  Zn-Sb phase diagram was avoided by the  use of antimony 

r i c h  melts t h a t  had z inc  concentrations t h a t  var ied  from 44 t o  46 .3  atomic pe r  

cent.  

The melts were prepared from 99.999% pure antimony and zinc(9)  i n  a manner 

t h a t  p a r a l l e l s  the method described i n  Sect ion 2.3.1. The cons t i t uen t  elements 

were i n s e r t e d  i n t o  a 11 x 13 m vycor tube which was then evacuated t o  about 

5 x Torr. a t  room temperature and sea l ed  o f f .  The vycor tube was no t  

carbonized. The ampoule was then placed i n  a rocking furnace (T" 65OOC) and 

the contents  reacted and mixed f o r  5 hours. The ampoule was water quenched 

and then placed i n t o  the  Bridgman furnace f o r  c r y s t a l  growth. 

The var ious growth ampoules were lowered through a temperature gradient  

of 50°C/inch a t  speeds t h a t  var ied (between ampoules) from 9.10 t o  0.033 

inch/hour. The ingots  were typica l ly  4 t o  6" long. The following observations 

a re  made on the b a s i s  of 7 samples t h a t  were successfu l ly  prepared i n  t h i s  

manner. 

No l a rge  s i n g l e  c r y s t a l  regions were obtained. The maximum s i z e  of the  

s i n g l e  c r y s t a l  regions was Freezing tended 

t o  take p lace  from the wal l s  of t h e  vycor ampoule inwards. This was evidenced 

by the  formation of r e l a t i v e l y  large s i n g l e  c r y s t a l  formations a t  the  sur face  

of an ingot  while t he  core portion was made up of many small  c r y s t a l s .  The 

ingots  were badly cracked. Etching with water d i l u t e d  CP-4 and a micro- 

scopic  examination of these cracks showed t h a t  many of them contained a t h i n  

3n the order  of 1 x 0 . 3  x 0.3 cm. 
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shee t  of a substance which had the  same e tch ing  c h a r a c t e r i s t i c s  as t h e  e u t e c t i c  

a l l o y  of antimony and z inc  ( s 3 3  A t . %  Zn content ) .  

b lack and leaves a c lean  su r face  on the  e u t e c t i c  a l loy .  

This e t chan t  co lo r s  ZnSb 

The above observations are compatible wi th ,  bu t  do n o t  necessa r i ly  prove, 

the  following remarks. Evidently,  the  s i n g l e  c r y s t a l  regions were l imi t ed  i n  

s i z e  because of  incomplete mixing condi t ions i n  the  melt. The enchancement 

of t he  concentrat ion of antimony a t  the  f r eez ing  i n t e r f a c e  ( o r  i n t e r f a c e s )  l e d  

t o  the premature formation of the  e u t e c t i c  a l loy .  This l imi t ed  the  s i z e  of 

the s i n g l e  c r y s t a l  regions. Furthermore, t h i s  s i t u a t i o n  i s  aggrevated as 

more of the melt f reezes ,  s i n c e  the  melt becomes r i c h e r  i n  antimony as ZnSb i s  

formed. Also, i t  is f e l t  t h a t  many of the  ingot  cracks were caused by 

mechanical s t r e s s e s  t h a t  were developed by the  an i so t rop ic  thermal expansion 

c h a r a c t e r i s t i c s  of the ind iv idua l  s i n g l e  c r y s t a l  regions.  

Attempts a t  the Bridgman growth of l a rge  ZnSb s i n g l e  c r y s t a l s  were 

abandoned when i t  was found t h a t  l a r g e r  s i n g l e  c r y s t a l  regions could be obtained 

wi th  unseeded melts i n  the  ho r i zon ta l  zone r e c r y s t a l l i z a t i o n  furnace.  No 

s i g n i f i c a n t  physical  measurements were made on the  Bridgman grown c r y s t a l s .  

2.3 GROWTH OF LARGE SINGLE CRYSTALS WITH A HORIZONTAL ZONE FURNACE 

2.3.1 Raw Mater ia ls  and Preparat ion of the  Various Components of the  
Crystal Growth Charge 

ASARCO(g) 99.999+% z inc  rods and 99.999% antimony cast ba r s  were used as 

s t a r t i n g  mater ia ls .  Quant i ta t ive  analyses suppl ied  by the  producer i nd ica t ed  

t h a t  copper and arsenic  were the p r i n c i p l e  impur i t i e s  i n  the  antimony and 

copper and cadmium i n  the zinc. These materials were used wi thout  any f u r t h e r  

a t tempts  a t  pu r i f i ca t ion .  

A l l  materials were s t o r e d  i n  an evacuated ( ‘L 50 t o  l o o p )  d e s s i c a t o r  

u n t i l  needed f o r  use. High p u r i t y ,  TransistAR grade‘”), reagents  were used 
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f o r  a l l  chemical treatments.  Trans is tAR grade hydrochlor ic ,  n i t r i c  and a c e t i c  

ac ids  as w e l l  as acetone and methyl a lcohol  were ava i lab le .  D i s t i l l e d  and 

demineralized water was used when appropriate .  

Materials were weighed t o  0.1 mg. accuracy on a Mettler Model B-5 

e le  c t  roni  c b a1 ance . 
Zinc was prepared f o r  use by e tch ing  away several millimeters of the  sur- 

face with hydrochlor ic  acid. 

i n  room temperature water. 

an 8OoC furnace f o r  about 30 seconds. The z inc  s l u g  w a s  then weighed. The 

des i red  amount of antimony was calculated from the  following formulas: 

The r e s u l t i n g  z inc  s l u g  was then r insed  6 times 

The zinc s l u g  was then d r i ed  on f i l t e r  paper i n  a i r  i n  

A. Stoichiometr ic  charges (50 A t . %  211-50 A t . %  Sb) 

(Weight Sb) = 1.8622 (Weight Zn) 

B. Zone l eve l ing  charge 

(Approx. 39.9 A t . %  Zn-60.1 A t . %  Sb) 

(Weight Sb) = 2 . 8  (Weight Zn) 

The antimony w a s  broken up i n  a mortar with a s t a i n l e s s  steel ch ise l .  Large 

p ieces  of antimony which had freshly cleaved faces  were used t o  make up the  

des i r ed  weight of antimony. 

General Electric Co. type 204 c l e a r  fused quar tz  tubing was used t o  process 

t h e  a l loys  as we l l  as t o  make containment ampoules f o r  f i n a l  c r y s t a l  growth. 

13 x 15 mm dia.  tubing was used t o  contain the  a l loys .  After  g lass  working, 

the qua r t z  tubes were etched for 10 minutes with hydrof lour ic  ac id  and water 

and then soaked i n  n i t r i c  ac id  f o r  1 / 2  hour. After  several water  and methyl 

a lcohol  r in ses ,  t he  tubes were outgassed a t  750 t o  900°C f o r  18 t o  36 hours 

under vacuum. Ultimate pressures were less than 1 x 10 Torr. The vacuum -6 

processing equipment i s  shown in  Figure 2.1. 
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Af te r  the  proper amounts of antimony and z inc  had been i n s e r t e d  and the  

tube evacuated, an outgas furnace was used t o  bake the  tube and i ts  contents  

a t  125 t o  175'C u n t i l  the  r e s idua l  pressure  dropped below 1 x lom5 Torr. (usual ly  

1 t o  4 hours). O i l  f r e e  heliumwas then admitted t o  the  system and the  qua r t z  

tube was cons t r i c t ed  under one atmosphere pressure  of helium. 

was then reevacuated and baked again as ou t l ined  above. 

s ea l ed  of f  at a room temperature res idua l  pressure  which w a s  less than 

5 x Torr. 

The a l loy  ampoule 

The a l loy  ampoule was 

The a l loy  (50-50 o r  60-40) was then reac ted  i n  a rocking furnace f o r  4 t o  

6 hours a t  temperatures between 675 and 725OC. 

quenched. 

long, t h i n  ba r s  which were of about the  same cross  sec t ion  as the  f i n a l  c r y s t a l .  

The a l loys  showed no tendency t o  s t i c k  t o  the  w a l l s  of the  qua r t z  ampoule. 

2.3.2 

The molten a l l o y  was water 

The ampoule was he ld  hor izonta l ly  f o r  t h i s  operat ion.  This gave 

Assembly of the  Crystal Growth Charge 

I n  the  process of t h i s  i nves t iga t ion ,  120 a l loy  charges were made up. 

The number of c r y s t a l s  grown was 80. 

several components of the c r y s t a l  growth charge can be grouped roughly i n t o  

two d iv i s ions  : 

The d e t a i l s  involved i n  processing t h e  

A. Chemically e tched components 

B. Mechanically abraded components 

A l l  of the  c r y s t a l s  upon which s i g n i f i c a n t  experimental da t a  was obtained f a l l  

i n t o  the  l a t te r  category. 

problem - discussed i n  Sect ion 2.3.5 - both types of su r face  treatments 

w i l l  be described. 

However, i n  order  t o  c l a r i f y  the  decomposition 

Before continuing, i t  i s  of i n t e r e s t  t o  note  the  geometry of the  s i n g l e  

This i s  shown i n  Figure 2.2. I n  essence the  growth c r y s t a l  growth charge. 
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charge contains  three  components: a bulk s to i ch iomet r i c  charge, a zone level-  

i n g  charge and a seed c rys t a l .  

2.3.2.1 Chemically e tched component sur faces  

When preparing the  growth charge f o r  the earliest  ho r i zon ta l  zone grown 

c r y s t a l s ,  the  sur face  of one, o r  more, of the  th ree  charge components w a s  

e tched w i  t h  : 

1 p a r t  HC1 (36%) 

1 p a r t  HN03 (70%) 

1 to  8 p a r t s  CH3COOH ( g l a c i a l )  

Rinse i n  HC1 (36%) ( 1  second) 

Rinse i n  d i s t i l l e d  water.  

A l l  a t  room temperature. 

A c e r t a i n  amount of success was obtained i n  growing a few l a rge ,  mechanically 

sound ZnSb c r y s t a l s .  However, the above e t ch  was not  s a t i s f a c t o r y  i n  t h a t  i t  

o f t en  formed grey f i lms over a l l  o r  p a r t  of the sur face  of t he  seed o r  an 

a l loy  charge. Quite o f t en  these  fi lms were not  not iced u n t i l  c r y s t a l  growth had 

s t a r t e d .  The appearance of these f i lms w a s  almost completely el iminated by 

s u b s t i t u t i n g  a room temperature r in se  in :  

10 p a r t s  HBF4 (50%) 

1 p a r t  H202 (30%) r i n s e  f o r  1 second 

f o r  the  HC1 r i n se .  However, when t h i s  was done, s e r ious  decomposition problems 

set  i n  during the  growth run. This decomposition w a s  suppressed by adding an 

atmosphere of argon t o  the growth ampoule before  s e a l i n g  it. This po in t  i s  

discussed f u r t h e r  i n  Section 2.3.5. 

2.3.2.2 Mechanically abraded component sur faces  

Consis tent ly  c lean melts were obtained when the component sur faces  were 
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cleaned, when necessary, by: 

1. Rinsing i n  TransistAR p u r i t y  grade acetone (bath 1). 

2 .  Sandblasting a l l  sur faces  . 
3. Soaking i n  acetone (bath 2 ) .  

4. Ult rasonica l ly  a g i t a t i n g  the  c r y s t a l  o r  a l loy  s lugs  i n  acetone 

(16) 

(bath 3 ) .  

5. Soaking i n  acetone (bath 4 ) .  

6. Drying on f i l t e r  paper i n  a clean room. 

Q u i t e  o f t en ,  the  water quenched a l loy  s lugs  were found t o  have very shiny and 

clean sur faces  when the ca re fu l ly  degreased (with t r ich loroe thylene)  quar tz  

ampoules were broken open i n  a clean room. In  these  cases ,  the  a l loy  s lugs  

were used as is  - with no f u r t h e r  su r face  treatment.  Single  c r y s t a l  components, 

such as the seed c r y s t a l  o r  a s i n g l e  c r y s t a l l i n e  bulk "50-50" charge (when 

used), had t o  be  surface t r e a t e d  as j u s t  out l ined.  

2 . 3 . 2 . 3  Preparation of the  quar tz  growth ampoule 

General E l e c t r i c  Co. type 204 c l e a r  fused qua r t z  tubing (15 x 18 m) w a s  

used t o  make the  c rys t a l  growth ampoules. Af te r  the chemical c leaning of the  

worked qua r t z ,  the in s ide  of the  tube was r insed  with acetone. This acetone 

w a s  decomposed i n  an oxygen d e f i c i e n t  atmosphere by hea t ing  the  inve r t ed  tube 

with a consumer gas - oxygen blowpipe flame. The p y r o l y t i c a l l y  decomposed 

carbon su r face  f i lm was then r insed with more acetone while  i t  w a s  s t i l l  hot .  

This w a s  repeated three  times. The carbonized quar tz  tube w a s  then outgassed - 
under vacuum - at  750 t o  900°C f o r  18 t o  36 hours. 

less than 1 x Torr. 

2.3.2.4 Assembly and vacuum process ing  

Ultimate pressures  were 

The properly surface t r e a t e d  (Section 2 . 3 . 2 . 2 )  components of the  c r y s t a l  
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growth charge were i n s e r t e d  i n t o  the outgassed, carbonized qua r t z  tube i n  a 

clean room. The sample tube was then sea l ed  back on t o  the  vacuum system. The 

elapsed time of exposure t o  the  atmosphere w a s  2 t o  5 minutes f o r  each component 

of the  charge. 

again i n  the  manner described i n  Section 2.3.1. Af te r  the  f i n a l  outgas cycle ,  

argon (12) was flushed i n t o  the  vacuum system and t h e  growth ampoule was sea l ed  

of f  with an i n t e r n a l  atmosphere of argon. The l i q u i d  n i t rogen  was removed from 

the  two main vacuum system cold t raps  a f t e r  the  f i r s t  argon was introduced i n t o  

vacuum system. The argon was then f lushed through the  l i q u i d  n i t rogen  cold t r a p s  

towards the pumps f o r  2 t o  5 minutes. Figure 2.2 shows the  growth ampoule. 

2.3.3 Descr ipt ion of the  Horizontal Zone Rec rys t a l l i za t ion  Furnace 

The growth charge was outgassed, helium cons t r i c t ed ,  and outgassed 

A sketch of the  b a s i c  features  of the  ho r i zon ta l  zone r e c r y s t a l l i z a t i o n  

furnace is  shown as Figure 2.3. The zone s t r u c t u r e ,  i t s e l f  consis ted of a s i n g l e  

tu rn  of 1/2" wide Kanthal ribbon. This was encased i n  a f i r e b r i c k  and t r a n s i t e  

holder  t ha t  c leared  the ambient furnace tube by about one mm. The zone tem- 

pe ra tu re  cont ro l  thermocouple was chrome1 - alumel and was inse r t ed  i n t o  a small 

diameter ho le  through the  f i r eb r i ck  zone s t r u c t u r e .  It was cemented i n  p lace  

wi th  the  thermocouple bead viewing the  back s i d e  of t he  Kanthal ribbon. 

Minneapolis-Honeywell Pyrovane (I3)  c o n t r o l l e r  was used t o  s t a b l i z e  the  zone 

temperature. The a.c. output of a constant  vol tage transformer powdered the  

zone s t r u c t u r e  through a su i t ab le  impedance matching transformer. The est imated 

s t a b i l i t y  of the  zone temperature cont ro l  is  

A 

2 O C .  

A chrome1 - alumel thermocouple was a l s o  used t o  cont ro l  the temperature of 

the  ambient hea te r .  It was cemented t o  the  i n s i d e  su r face  of the  vycor ambient 

he ate r tube. 

s t a b l i z e  the  ambient temperature. It  was used i n  conjunction with a magnetic 

A Minneapolis -Honeywe 11 Elec t  rovol t (14) c o n t r o l l e r  was used t o  
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ampl i f i e r  and sa turable  core reac tor .  

ambient is estimated t o  be 2 l 0 C  and the  long term s t a b i l i t y  as 2 2OC. 

The s h o r t  term temperature s t a b i l i t y  of the  

The e n t i r e  furnace was placed i n  a blocked-off fume hood t o  p r o t e c t  i t  

from d r a f t s .  

gear reduct ion t o  move the  zone s t ruc tu re .  

was used t o  produce the s i n g l e  c r y s t a l s .  

60 r.p.m. 

It drove the  gear t r a i n  through a nylon s h a f t  and f l e x i b l e  couplings.  

A d.c. motor drove a 20 threads/ inch lead  screw through a 1:6000 

A nominal growth rate of 0.030"/hr 

This corresponds t o  a motor speed of 

The motor was mounted independently of the  zone furnace and fume hood. 

The temperature p r o f i l e  of the  zone s t r u c t u r e  was determined by running a 

This sample was i d e n t i c a l  t o  a c r y s t a l  sample except dummy sample through it. 

t h a t  aluminum oxide cement took the  p lace  of the  z inc  antimonide. 

were imbedded i n  the  cement. By a measurement of t h i s  s o r t ,  the  temperature 

gradient  a t  the  freezing i n t e r f a c e  i s  est imated t o  be about 75 t o  100°C/inch and the  

maximum zone temperature about 58OoC. 

f o r  an a d i e n t  temperature of 415OC. 

2.3.4 Single  Crystal  Growth Conditions 

Thermocouples 

The temperature grad ien t  w a s  measured 

The use of an ambient h e a t e r  with the  zone furnace serves two purposes: 

1. It helps  t o  suppress c r y s t a l  decomposition by keeping the  r e s idua l  

vapor pressure of the v o l a t i l e  component (z inc)  high. 

2. I n  conjunction with the  slow growth rate, the  high ambient temperature 

sub jec t s  the  as grown c r y s t a l  t o  an annealing cycle.  This tends t o  

r e l i e v e  s t r a i n s  and homogenize the  d i s t r i b u t i o n  of impur i t ies .  

In  summary, the  c rys t a l  growth condi t ions were: 

A. Argon atmosphere (14.7 p . s . i .  a t  room temperature).  Carbonized 

quar tz  ampoule w a l l s .  

B. Ambient hea te r  temperature:410 t o  425'C-varying with the  c r y s t a l .  
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C .  

D. Crys ta l  growth speed: 0.030 inch/hour. 

E. 

To avoid thermal shock damage t o  the  l a rge  s i n g l e  c r y s t a l s ,  the zone 

furance was slowly cycled up t o  operat ing temperature before  growth and 

back down t o  room temperature i n  the same manner (40OoC were covered i n  

2 hours).  This was accomplished by increas ing  o r  decreasing the  a.c. input  

power with Variacs. 

2 . 3 . 5  Decomposition During Growth and i t s  Suppression 

Maximum zone temperature of about 580OC. 

Total  zone travel of, typical ly ,  15 c m  i n  200 hours. 

This was done manually. 

A s  the  e tch ing  procedures ( r e fe r  t o  Sections 2 . 3 . 2 . 1  and 2 . 3 . 2 . 2 )  were 

improved, a p e r s i s t e n t  and ser ious  decomposition set  i n  during c r y s t a l  growth. 

This was e spec ia l ly  not iced  when al loy s lugs  were used without chemically 

e t ch ing  t h e i r  surfaces .  This decomposition was evidenced by the  condensation 

of considerable  q u a n t i t i e s  of mater ia l  on the  cooler  regions of the  w a l l  of 

the  c r y s t a l  growth ampoule. 

sometimes become sever ly  warped and would ac tua l ly  c u r l  up aga ins t  the  top of 

The r e c r y s t a l l i z e d  por t ion  of the  ingot  would 

the  growth ampoule. 

mechanical s t r eng th ,  and had thermally etched sur faces .  On the  order  of a 

gram of d i s t i l l a t e  (of a nominal t o t a l  charge weight of 30 t o  60 g.) condensed 

i n  the  form of hundreds of small (0.1 t o  2 nun dia . )  d rop le t s ,  which were f a i r l y  

evenly d i s t r i b u t e d  over t h e  ampoule walls. 

The r e su l t i ng  ingots  were very po lyc rys t a l l i ne ,  had poor 

This extreme degree of decomposition was observed on seven c r y s t a l  growth 

runs. Ambient temperatures were var ied  from 460 t o  49OoC i n  an attempt t o  

s t o p  t h i s  decomposition. The maximum zone temperature was on the order  of 

560 t o  58OOC. The nominal z inc content  of t he  molten zone w a s  var ied  between 

40 t o  46 A t . % .  Although a l l  possible  va r i a t ions  of these parameters were not  
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t r i e d ,  the  decomposition showed no sign of abating. 

A quan t i t a t ive  (5 1%) w e t  chemical ana lys i s  of samples of d i s t i l l a t e  

from four  decomposed c r y s t a l s  ind ica ted  the  presence of both z inc  and antimony 

with an average composition of 37 w t . %  Zn and 6 3  w t . %  Sb. This i s  a few 

percent  t o  the  zinc r i c h  s i d e  of the  ZnSb composition ( 3 4 . 9  w t . X  Zn - 65.1 w t . %  

Sb). 

It was found t h a t  t h i s  decomposition could be suppressed by b a c k f i l l i n g  

the  c r y s t a l  growth ampoule with n i t rogen  o r  argon, a t  s tandard temperature and 

pressure,  before  s e a l i n g  the  ampoule from the vacuum system. Incandescent 

lamp grade argon ( I 2 )  was used i n  preparing a l l  of the  c r y s t a l s  on which sign- 

i f i c a n t  e x p e r i m n t a l  da t a  was obtained. 

2 . 3 . 6  Preliminary Survey of Crystal Proper t ies  

The c r y s t a l s  described here  were produced under the  conditions ou t l ined  

i n  Sect ion 2 . 3 . 4 .  

half-round cross  sect ion.  They were typ ica l ly  7 mm high,  13 mm wide and 10 

t o  15 c m  long. The typ ica l  s i n g l e  c r y s t a l  weighed 40 t o  60 grams. 

The ho r i zon ta l  zone r e c r y s t a l l i z e d  c r y s t a l  ingots  had a 

The c r y s t a l  ingots had a good mechanical appearance. They were f r e e  of 

mechanical voids o r  inc lus ions .  The f r e e  su r face  (during growth) of the  c r y s t a l  

ingots  occasionally displayed randomly s c a t t e r e d ,  s ca l e - l i ke  patches.  These 

occurred with a density of 2 t o  20 p e r  c m  , were 0.1 t o  1 mm i n  dia .  , had a 

convex cross  sec t ion  and typ ica l ly  extended 0.05 t o  0.10 mm i n t o  the c r y s t a l .  

It is  not  known whether these  patches a re  co l l ec t ions  of decomposition products 

o r  co l l ec t ions  oxidation products.  

of the  s i n g l e  c rys t a l  region next  t o  a mottled su r face  d id  not  revea l  any 

s t r a i n i n g  o r  low angle gra in  boundary formation which might be caused by these  

patches.  

2 

Laue back r e f l e c t i o n  x-ray photographs 

. 
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The c r y s t a l  growth ax is  Gas within seve ra l  degrees of the  <001> d i r ec t ion  

f o r  some of the  c r y s t a l s  used i n  the thermal measurements. The majori ty  of 

the c r y s t a l s  used f o r  galvanomagnetic and thermal experiments were grown i n  

the  <316> di rec t ion .  

All c r y s t a l s  were o r i en ted  with Laue back r e f l e c t i o n  x-ray photographs. 

(15) The c r y s t a l  axes a r e  i d e n t i f i e d  as follows: 
0 

<loo> = a = 1 = 6.20A 

<010> = b = 2 = 7.74A 

cool> = c = 3 = 8.10A 

0 

0 

Low angle  gra in  boundaries - on the  order  of 0.1' - could be v i sua l ly  

de tec ted  on a sandblasted (16) c r y s t a l  sur face .  Their presence was confirmed 

with the back r e f l e c t i o n  x-ray camera. Crystals  grown i n  uncarbonized quar tz  

ampoules had a d e f i n i t e  tendency t o  form low angle gra in  boundaries. Three 

t o  ten would typ ica l ly  occur i n  an ingot .  The frequency of occurrance of 

these low angle gra in  boundaries was g rea t ly  reduced by carbonizing the  ampoule 

walls. The low angle gra in  boundaries tended t o  l i n e  up p a r a l l e l  t o  the  c- 

ax i s  of the  c r y s t a l .  

The f a c t  t h a t  ZnSb was ac tua l ly  being produced was confirmed with a Debye- 

Scher rer  powder camera x-ray photograph and by a q u a n t i t a t i v e  wet chemical 

ana lys i s  (+ 1%) of two d i f f e r e n t  c r y s t a l s .  

Af t e r  sandblas t ing  a l l  sur faces ,  longi tudina l  p r o f i l e s  of e l e c t r i c a l  

r e s i s t i v i t y  and thermoelectr ic  power were taken with a four  poin t  probe and 

a h o t  probe. 

t o  wi th in  a t  least f. 5% over the f i r s t  50 t o  75% of the  length of the  ingot .  

The r e s i s t i v i t y  and thermoelectr ic  power was usual ly  uniform 
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2.3.7 Depree of Crystal Per fec t ion  

Photomicrographs of e tched sur faces  and Laue back r e f l e c t i o n  x-ray photo- 

graphs can be used t o  estimate the  degree of  pe r fec t ion  of a c r y s t a l  sur face .  

I l l u s t r a t i o n s  of two relative extremes w i l l  be presented here .  

The f i r s t  s e t  of i l l u s t r a t i o n s ,  Figures  2.4, 2.5 and 2.6, were taken 

approximately on a (001) plane of c r y s t a l  C-1061-A. This c r y s t a l  was grown 

i n  an uncarbonized qua r t z  ampoule. The c r y s t a l  wafer was ca re fu l ly  f i n a l -  

pol ished with Linde B powder. It was etched,  at room temperature f o r  one 

minute, i n  1 p a r t  H C 1  (36%), 1 p a r t  HN03 (70%), 8 p a r t s  CH3COOH ( g l a c i a l ) ;  

r insed  i n  10 p a r t s  HBF4 (50%) and 1 p a r t  H202 (30%) f o r  1 second and then 

r insed  i n  water. The na ture  of the  e t c h  p i t  p a t t e r n s  d id  no t  change with 

repeated repol i sh ing  and re-etching. It i s  assumed t h a t  each ind iv idua l  

e t ch  p i t  corresponds t o  one edge d i s loca t ion  i n  the bulk of the  c r y s t a l .  

The photomicrographs, Figures 2.4 and 2.5, show how the  d i s loca t ions  tend 

t o  l i e  i n  the  (100) and (010) planes of the  c r y s t a l .  Sonre of t h e  l i n e a r  

d i s loca t ion  arrays conta in  such a l a rge  number of d i s loca t ions ,  t h a t  they 

seem t o  form low angle gra in  boundaries. The Laue back r e f l e c t i o n  photograph, 

Figure 2.6, i nd ica t e s  t h a t  t h i s  c r y s t a l  i s  a c t u a l l y  a mosaic s t r u c t u r e ,  made 

up of small s i n g l e  crystals regions.  The f i n e  s t r u c t u r e  p a t t e r n  of t he  

ind iv idua l  x-ray r e f l e c t i o n  spo t s  i nd ica t e s  t h i s .  It should be  noted t h a t  t h i s  

severe degree of  mosaic s t r u c t u r e  was no t  t y p i c a l  of  a l l  of t he  c r y s t a l s  

which were grown i n  uncarbonized qua r t z  ampoules. 

with much c l eane r  back r e f l e c t i o n  x-ray photographs. 

ments were made on c r y s t a l  C-1061-A. 

Some c r y s t a l s  had regions 

No phys ica l  measure- 

Crystal C-1061-A w a s  n o t  doped. 

Figures 2.7 and 2.8 present  s i m i l a r l y  observed r e s u l t s  f o r  t h e  undoped 

c r y s t a l  which was used i n  galvanomagnetic and thermal measuremnts ,  C-1081-C. 
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This c r y s t a l  w a s  grown i n  the  <316> d i r e c t i o n  i n  a carbonized qua r t z  ampoule. 

It is  seen t h a t  the  dens i ty  of d i s loca t ions  has  been reduced. The e t ch  p i t s  

a r e  randomly sca t t e red .  The back r e f l ec t ion  x-ray photograph has w e l l  def ined 

r e f l e c t i o n s .  

which was h a l f  the  diameter of t ha t  of the  camera used t o  obta in  Figure 2.6. 

The e tch  p i t s  shown i n  Figure 2.7 d i f f e r  from the  preceding i n  t h a t  they are 

approximately rhombohedral i n  shape. 

This photograph was taken on a camera which had a beam col l imator  

This is  becasue t h i s  su r f ace  w a s  e tched 

was used. (17) d i f f e r e n t l y  from the preceding. An e tch  recommended by Hruby 

It cons is ted  of 8 p a r t s  g lycero l ,  6 p a r t s  H202 (30%) and 3 p a r t s  HF (48%). 

It w a s  used a t  room temperature. The c r y s t a l  was etched f o r  about 1 minute 

and r insed  i n  room temperature water. 

e t ch  p i t  d e n s i t i e s )  were observed on c r y s t a l  C-10784 (p% 4 x 1017 copper doped) 

and C-1115-A (p % 1 x 10 copper doped). Etch p i t  d e n s i t i e s  and d i s t r i b u t i o n s  

similar t o  t h a t  i l l u s t r a t e d  by Figure 2.7, were a l s o  obtained when the  above 

descr ibed aqus r e g i a  e t c h  was used. 

2.4 CONTROL OF ELECTRICAL CARRIER CONCENTRATION 

S imi la r  e t ch  p i t  f i gu res  (and comparible 

19 

Undoped c r y s t a l s  were p-type as grown. Hole concentrat ions were on the  

16 -3 order  of 2 x 10 c m  . 
2.4.1 Acceptor Dopant 

Copper was used as an acceptor dopant. The dopant was introduced by 

inc luding  a measured amount of a Cu-Sb a l loy  wi th  t h e  antimony which was used 

t o  make up a nominally 60 At.%Sb-40 At..%Zn 

heav i ly  doped samples, small pieces of copper (99.999% p u r i t y )  were d i r e c t l y  

added t o  the  60-40 charge before i t s  encapsulat ion.  No copper w a s  added t o  

t he  bulk a l loy  charge which was of s to i ch iomet r i c  (50-50) composition. The 

copper was then incorporated (from the  molten zone) i n t o  the  crystal during 

the  normal c r y s t a l  growth process. 

zone l eve l ing  charge. For very 
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This procedure w i l l  g ive a f a i r l y  uniform doping level  over t he  length 

of a newly grown c r y s t a l  i f :  

1. The port ion of t he  c r y s t a l  of i n t e r e s t  ( f o r  experimentation) i s ' sma l l  

compared t o  t h e  s i z e  of the  molten zone. 

2. The d i s t r i b u t i o n  c o e f f i c i e n t  (I8) of the  impurity atom is  much less 

than uni ty .  

Both condi t ions  were m e t  wi th  the  copper doped c r y s t a l s  used i n  t h i s  i nves t iga t ion .  

The molten zone length w a s  about 3 c m  long while  the  t o t a l  l ength  of t he  grown 

c r y s t a l  was 8 t o  15 cm. 

one s e t  of experimental measurements. 

Only one o r  two cent imeters  of t h i s  was needed f o r  any 

From Table 2.1. presented i n  the  next  

s ec t ion ,  t h e  d i s t r i b u t i o n  c o e f f i c i e n t  ( t he  r a t i o  of t he  impurity concentrat ion 

i n  the s o l i d  t o  i t s  concentrat ion i n  the  melt)  of  copper i n  ZnSb can be 

est imated as being about 1/15 = 0.067. 

2.4.2 Donor Dopants 

J u s t i  e t  a1.(4) have t r i e d  t o  produce n-type ZnSb by chemical doping with 

Te and Ga .  They were unsuccessful.  A l ,  Se and In  were t r i e d  as donor dopants 

i n  the  present  work. These were introduced i n t o  the  growth process i n  exac t ly  

the  same way as copper i n  the  above descr ibed copper doping proccss. 

were grown with molten zones conta in ing  approximately the  following number 

Crys ta l s  

d e n s i t i e s  of impurity atoms: 

3 Aluminum: 3 x 1 O I 8  impurity atoms/cm 

19 4 x 10 

18 Selenium: 5 x 10 

6 x 10'' 

19 Indium: 8 x 10 

I n  a l l  cases, the  c rys t a l s  showed p-type e l ec t r i ca l  conduction. This was 

determined a t  room temperature by measuring the  thermoelec t r ic  power wi th  
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a ho t  probe. 

2.5 SUMMARY OF PROPERTIES OF CRYSTALS USED FOR MEASUREMENTS 

The bas i c  d i f fe rences  i n  the  e l e c t r i c a l  c h a r a c t e r i s t i c s  of the  c r y s t a l s  

used i n  the  measurement phases t h i s  i nves t iga t ion  are summarized i n  Table 2.1. 

Copper w a s  used t o  cont ro l  the  hole concentrat ions i n  the  doped c r y s t a l s .  

2.6 PREPARATION OF MEASUREMENT SAMPLES 

2.6.1 Crystal Or ien ta t ion  and Cutt ing 

Crys ta l s  were o r i en ted  with Laue back r e f l e c t i o n  x-ray photographs. On 

the  bas i s  of many o r i e n t a t i o n  checks before and a f t e r  cu t t i ng ,  the o r i e n t a t i o n  

and c u t t i n g  procedures were found t o  be accurate  wi th in  5 2 degrees. 

The s i n g l e  c r y s t a l s  were found t o  be f a r  too b r i t t l e  t o  be cut  r e l i a b l y  

(19) with ava i lab le  diamond c u t  o f f  wheels. Consequently, spark erosion c u t t i n g  

was used t o  sec t ion  the  c r y s t a l s  and shape a l l  sur faces  of the measurement 

samples. 20 m i l  d i a .  and 5 m i l  d i a .  tungsten wires were used as c u t t i n g  

e lec t rodes .  

of 30 t o  40 v o l t s  and s h o r t  c i r c u i t  cur ren ts  of about 20 ma. The c u t t i n g  

speed was s e t  a t  about 1 cm/hr. 

thermally generated cracks i n  the c r y s t a l  - espec ia l ly  i n  the  higher  r e s i s t i v i t y  

c r y s t a l s .  The r e s u l t i n g  surfaces  were found to  be very uniformly cut .  Some 

su r face  damage ( o r  depos i t s )  was present ,  bu t  t h i s  was removed by eroding 

away about 10 microns of the surface with an a i r  brasive cu t t e r .  

The cu ts  were made under deodorized kerosene with working vol tages  

Faster c u t t i n g  speeds tended t o  produce 

(16) 

These sandblasted sur faces  contained, of course,  a damaged layer .  The 

major por t ion  of t h i s  damage was confined t o  the  f i r s t  7 t o  10 microns of 

the  surface.  This w a s  determined by back r e f l e c t i o n  x-ray photographs. A 

sandblasted c r y s t a l  sur face  generally had w e l l  def ined x-ray r e f l e c t i o n  spo t s ,  

b u t  o f t en  f a i n t ,  very d i f fuse  spots and b lo tches  a l s o  would appear.  These 
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were absent from x-ray photographs of chemically e tched sur faces .  

2.6.2 Galvanomagnetic Samples 

The t y p i c a l  galvanomagnetic sample geometry i s  shown as Figure 2.9. An 

e f f o r t  was made t o  keep the  (length t o  width) aspect r a t i o  of the  samples a t  

l e a s t  as high as 8 or 10. 

inhomogeneous e l e c t r i c  cur ren t  d i s t r i b u t i o n  i n  the  v i c i n i t y  of the  current  

contacts .  This precaut ion also minimized the  dis turbance of the  magneto- 

r e s i s t a n c e  measurement which was introduced by the  f i n i t e  s i z e  of the  

vol tage probe contacts .  

had a maximum length of 8 mm and had t o  be used with an aspect  r a t i o  of about 

6 t o  8. The samples which were used t o  ca re fu l ly  measure the  degree of 

anisotropy i n  the  H a l l  e f f e c t  had t ransverse  dimensions approaching 1.5 mm. 

These dimensions were increased  t o  reduce the  measurement per turba t ions  

introduced by the  f i n i t e  contac t  areas of the  H a l l  probes. 

2.6.3 Electrical  Contacts 

This was done t o  minimize the  e f f e c t s  of the 

Because of c r y s t a l  geometry, t he  <loo> axis  samples 

It w a s  found t h a t  ordinary (60-40) l ead- t in  so lde r ,  appl ied with a ros in  

f l u x ,  w e t  z inc  antimonide very wel l  and produced exce l l en t  ohmic contacts .  

Over a hundred contacts  were s p e c i f i c a l l y  t e s t e d  f o r  ohmic behavior a t  

room temperature and a t  77.3OK. 

as 50 A/cm . No non l inea r i ty  was ever observed. 

Contact cur ren t  d e n s i t i e s  reached as high 

2 

Fine copper wires were soldered t o  the  galvanomagnetic samples with a 

h o t  gas je t .  

su r f ace  of a sample bar.  

a t  the  end, w a s  then posi t ioned with a micromanipulator and but ted  aga ins t  

t h e  surface.  A second micromanipulator w a s  then used t o  pos i t i on  the  15 

A b i t  of ro s in  f lux  was appl ied t o  the  f r e sh ly  sandblasted 

A pret inned copper wire ,  with a small so lde r  bead 

m i l  d ia .  nozzle  of a homemade, vycor enclosed, r e s i s t a n c e  heated gas j e t  
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50-50 Pb-Sn 
SOLDER DO' 

1.5 m i l  DIA. 
COPPER WIRE 
VOLTAGE PROBES 

f------------ LENGTH * 

CURRENT CONNECTIONS AT LEADS A-G 
RESISTIVITY MEASUREMENT AT LEADS B-F 
HALL VOLTAGE MEASUREMENT AT LEADS C-B AND D-F 

DIAMETERS OF SOLDER DOTS AT ELECTRICAL CONTACTS 
TYPICALLY: 0.3 mm FOR CURRENT CONTACTS A-G 

0.08 TO 0.10 mm FOR VOLTAGE PROBES 

TYPICAL SAMPLE DIMENSIONS: 
1. ELECTRICAL CLRRENT ALONG <OlO> OR < 001 > 

L E N G T H = 9 T O l l  mm LV=3mm 
h = 1.2 mm 

t = i.0 mm 

LE = 3 T O 4 m m  

2. ELECTRICAL CURRENT ALONG <loo> 
LENGTH = 6 TO 8 mm L = 2 mm V 

h = 1.2 mm 

t = 1.0 mm 

LE = 2 TO 4 mm 

3. ELECTRICAL CURRENT AT 45' TO A PRINCIPAL 
CRYSTAL AXIS: 

DIMENSIONS ARE IN BETWEEN THOSE 
OF 1. and 2. ABOVE 

Fig. 2.9 Galvanomagnetic Sample Geometry 
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hea te r .  The f i n e  j e t  of heated gas ( %190°C) was then turned on and the  bond 

made i n  3 t o  5 seconds. E i the r  ni t rogen o r  forming gas w a s  used. 

Voltage probes had contact  diameters of about 0.1 mm. Current contacts  

had diameters of about 0.3 rmn. The cur ren t  contac ts  were not  made with a 

l a r g e r  a rea  because of po ten t i a l ly  dangerous, d i f f e r e n t i a l  thermal expansion 

stress generat ion when the  samples were cooled t o  77.3'K. 

2.6.4 Galvanomapnetic Sample S u r f a r z  

In  order  t o  avoid c a r r i e r  accumulation a t  the  sample su r faces ,  the  su r face  

(20,221 recombination ve loc i ty  was increased by using sandblasted sample sur faces  

The use of chemically etched sur faces  i s  noted i n  the t ex t  when such a case 

occurs i n  the  measurements. 

-J 2.6.5 Thermal Samples 

Thermal measurement samples, used f o r  thermoelectr ic  power and thermal 

conduct ivi ty  measurements, were approximately cube shaped and measured 3 t o  

5 rmn on a s ide .  The cubes were cut  so t h a t  they were bounded by the  3 

p r inc ipa l  c rys t a l log raph ic  planes. 

2.6.6 Thermal Contacts 

The thermal conduct ivi ty  measurement required l a rge  a r e a  contacts  which 

(23) were made t o  a b r i t t l e  material which has an an i so t rop ic  thermal expansion 

A low temperature solder ing technique was used. This minimized mechanical 

s t r a i n i n g  and c r y s t a l  breakage due t o  d i f f e r e n t i a l  thermal expansion between 

any two p r i n c i p l e  axes and the copper hea t  source o r  s ink.  

(16) Two opposi te  faces  of the thermal conduct ivi ty  sample were sandblasted 

and ca re fu l ly  p l a t ed  with indium from a room temperature bath of indium su l -  

famate platting solut ion(21) .  The copper hea t  source and s ink  of the  thermal 

conduct ivi ty  chamber (Section 3.2.2 and Figure 3.6) were t inned with gallium. 
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The ZnSb c r y s t a l  was then r a i s e d  t o  s l i g h t l y  above room temperature ( t o  about 

3OBC) and the  indium p l a t e d  faces t inned  with gallium. 

placed i n  contact  with the h e a t  source and hea t  s i n k  and the  whole assembly 

was cooled t o  about 15'C where the supercooled gal l ium s o l d e r  f roze.  

measurements were made a t  O°C. 

excursion w a s  experienced by the  s o l i d  gal l ium s o l d e r  contac ts .  

The c r y s t a l  was then 

Thermal 

Hence, only about a 15-20°C maximum temperature 

This so lder ing  technique a l s o  has the  advantage t h a t  t h e  c r y s t a l  sample 

can be e a s i l y  unsoldered, cleaned, and remounted wi th  a d i f f e r e n t  c rys t a l lo -  

graphic o r i en ta t ion .  I t  was o f t e n  poss ib l e  t o  run complete sets of thermal 

measurements on a l l  three sets of faces  of a given cube. 

These indium p l a t e d  and gal l ium so ldered  contac ts  were found t o  be ohmic 

2 up t o  the h ighes t  t e s t e d  cur ren t  l eve l ,  which was 0.5 A/cm . For a f u r t h e r  

d i scuss ion  of e l e c t r i c a l  cotitact r e s i s t ance ,  r e f e r  t o  Sect ion 3 .2 .2 .  

The measured thermal conduc t iv i t i e s  were found t o  be independent of 

sample length.  Hence, the thermal r e s i s t ance  of  t he  contac ts  was n e g l i g i b l e  

a lso.  
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CHAPTER 3 

MEASUREMENT INSTRUMENTATION 

3.1 GALVANOMAGNETIC MEASUREMENTS 

3.1.1 Introduct ion 

Galvanornagnetic measurements should be made on isothermal samples. This 

e l imina tes  thermal and thermomagnetic cont r ibu t ions  t o  experimentally measured 

sample voltages.  These poin ts  and methods f o r  minimizing t h e i r  in f luence  

have been discussed by many authors (1- 3) 

An a.c. measurement system was used i n  t h i s  inves t iga t ion .  A a.c. sample 

cur ren t ,  a d.c. magnetic f i e l d ,  and a frequency s e l e c t i v e  a.c. de t ec t ion  

system were used. 

e l imina ted  the  inf luence  of both the P e l t i e r  hea t  generation a t  the  cu r ren t  

contacts  and the  Ettingshausen e f f ec t .  Reasonable care i n  hea t  s ink ing  the  

measurement sample and i n  using small sample cur ren ts  minimized the  inf luence  

The use of frequencies above roughly ten  cps. e f f e c t i v e l y  

of nonuniform Joule  heat ing.  

3.1.2 Galvanomagnetic Measurement Instrumentation 

Figure 3.1 presents  a block diagram of the  instrumentat ion scheme. 

f igu re  i s  l a rge ly  s e l f  explanatory. The primary a.c. s i g n a l  source was the  

Hewlett-Packard model 200 CD audio o s c i l l a t o r .  The frequency of operat ion 

was general ly  i n  the  range of 150 t o  230 cps - although frequencies as low as 

18 cps were used on occasion. 

w a s  ca re fu l ly  ca l ibra ted .  It served as the  secondary voltage reference f o r  

c a l i b r a t i n g  the  measurement system by means of a p rec i s ion  r e s i s t ance  vol tage  

d iv ider .  The o the r  VTVM, connected i n  p a r a l l e l  with the  f i r s t ,  reduced the  

p o s s i b i l i t y  of a sudden VTVM malfunction s p o i l i n g  a measurement run. 

This 

One of the  Hewlett-Packard model 400 D VTVM's  
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The cance l la t ion  network is a simple R-C phase and amplitude s h i f t i n g  

c i r c u i t ,  shown i n  Figure 3.2. It was used t o  provide a cance l l a t ion  s i g n a l  

t o  n u l l  out  the extraneous I R  sample vol tage picked up by misaligned H a l l  

probes. This c i r c u i t  was a l s o  used t o  n u l l  out  the  zero  magnetic f i e l d  I R  

vo l tage  picked up by the  sample voltage probes. When the  magnetic f i e l d  w a s  

then appl ied,  the r e s u l t i n g  measured vol tage could be used d i r e c t l y  t o  y i e l d  

the magnetoresistance vol tage ,  AV/V". This voltage i s  equal t o  Ap/po i f  t he  

sample cu r ren t  remains cons tan t  when the  magnetic f i e l d  i s  applied.  This i s  

t r u e  here  s ince  the cu r ren t  l imi t ing  r e s i s t o r ,  RS, was 30 t o  100 times higher  

than the  sample r e s i s t ance  and a l so  s ince  Ap/po w a s  genera l ly  less than 1%. 

R could be chosen from any one of seven r e s i s t ance  values i n  the  range S 

of 5 t o  1000 ohm by a b u i l t  i n  s e l e c t o r  switch. The same is  t rue  of Cp and 

Cs - values from 0.001 through 1.0 pf could be s e l e c t e d  by bu i l t - i n  switches.  

By de r iv ing  the cance l l a t ion  voltage d i r e c t l y  from the  sample cur ren t ,  small 

amplitude and frequency f luc tua t ions  i n  the output of the  audio o s c i l l a t o r -  

power ampl i f i e r  e x c i t a t i o n  source d id  not  have a f i r s t  o rder  e f f e c t  on the  

s t a b i l i t y  of the  vol tage nu l l .  
/ 

6 I R  sample vol tage could be rout ine ly  nul led  t o  1 p a r t  i n  10 . The phase 

and amplitude adjustrnent potentiometers were 10 tu rn  he l ipo t s .  

c e l l a t i o n  network could be switched out  t o  give a d i r e c t  measurement of 

sample r e s i s t i v i t y .  

w i th in  a few seconds t o  give a sys tem c a l i b r a t i o n  check a t  anytime. System 

c a l i b r a t i o n  was checked o f t en  during a da ta  tak ing  run. 

The can- 

The ca l ib ra t ion  network could be switched i n  and out 

The Tektronix type 122-A low l e v e l  preampl i f ie r  w a s  ba t t e ry  operated.  

I ts  ad jus tab le  upper and lower half-power poin ts  were usual ly  s e t  at 80 

and 250 cps respect ively.  The s k i r t s  on the passband f e l l  o f f  with a 
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l i m i t i n g  assymptote of 20 dbldecade. 

by t h i s  preampl i f ie r  f o r  input  voltages less than 5 mv with 1000 x gain 

and 50 mv wi th  100 x gain. 

megohms i n  p a r a l l e l  with 50 pf. 

Negl igible  d i s t o r t i o n  w a s  introduced 

The input impedance of t h i s  preampl i f ie r  w a s  10 

A General Radio Co. type 736-A wave analyzer  was used as a tuned vol t -  

meter. The 3 db width of the  passband i s  r a t ed  as 6 cps  and the  passband 

width i s  r a t ed  as being about 30 cps a t  40 db down. The top 80% of the  meter 

de f l ec t ion  was found t o  be l i n e a r  within 1%. The c a l i b r a t e d  a t t enua to r s  i n  

t h i s  instrument were ca re fu l ly  checked f o r  proper sca l ing .  F u l l  s c a l e  

vol tages  of 0.3 PV t o  100 mv could be quickly and accura te ly  chosen by 

switching these i n t e r n a l  a t tenuators .  

The e n t i r e  measurement system was ca re fu l ly  shielded.  Ground loops 

were assiduously avoided. The frame of the  Varian Associates e l ec t ro -  

magnet w a s  used as a common ground point .  With a measurement sample i n  

p lace ,  the  r e s idua l  60 cps signal i n  the  measurement system (wave analyzer  

tuned t o  60 cps) was less than 5 PV. 

The Sens i t ive  Research Corporation Model A therm-milliammeter was 

c a r e f u l l y  c a l i b r a t e d  aga ins t  a 10.007 5 0.05 Int-ohm o i l  inmrersed prec is ion  

r e s i s t o r  with a Leeds and Northrup type K potentiometer.  The s tandard cell 

used was cross  checked aga ins t  severa l  o thers  t o  confirm i ts  emf. 

One test of the  operat ion of the  e n t i r e  measurement system involved the  

measurement of known res i s tances  i n  the  range of 0.1 t o  l0n. These test 

r e s i s t a n c e s  were mounted i n  the  ac tua l  sample holders  and could be con- 

s i s t e n t l y  measured t o  wi th in  1% over the  frequency range of 20 t o  300 cps. 

The Rawson, Model 720 r o t a t i n g  c o i l  fluxmeter was c a l i b r a t e d  aga ins t  

a Varian Associates model F-8A nuclear  magnetic resonance fluxmeter. No 
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c a l i b r a t i o n  cor rec t ions  had t o  be appl ied  t o  the  fluxmeter readings.  

l imi t ed  t o  1/2% absolu te  accuracy by reading p rec i s ion  only. 

It was 

Three inch dia .  tapered pole  p ieces  were used on the  6" electromagnet - 
Varian Associates model V-4007. The pole  spacing w a s  1-1/8". The magnetic 

f i e l d  was measured t o  be homogeneous t o  wi th in  112% over  a diameter of 1-1/2 

inches.  The l a r g e s t  experimental  sample dimension was less than 1 /2  inch. 

3.1.3 Galvanomagnetic Sample Mounting and Or ien ta t ion  

3.1.3.1 Sample holders  and sample mountinq 

A sample holder  with a mounted magnetoresistance sample is  shown as 

Figure 3,3. The cons t ruc t ion  of these  samples holders  has  been discussed by 

Blair'4' and Nelson'5), The 1/8" th ick  p la t form and the body of the  holder  

i s  machined from a s i n g l e  p iece  of aluminum. The aluminum is anodized (and 

dyed black)  t o  provide a thermally t h i n  y e t  e l e c t r i c a l l y  i n s u l a t i n g  layer .  

Seven 830 t e f l o n  in su la t ed  copper leads and a thermocouple p a i r  are brought 

down a 3 t o  4 foot length of t h i n  w a l l ,  non-magnetic s t a i n l e s s  steel  support  

tube. The thermocouple bead i s  Pb-Sn so ldered  t o  a b ras s  s t u d  which is 

screwed through the sample platform, The e lectr ical  leads are terminated 

a t  so lde r ing  pos ts  which are imbedded i n  a t e f l o n  terminal  block. A s i m i l a r l y  

anodized aluminum can is screwed over  the e n t i r e  assembly. The can acts as 

an e lec t r ica l  and l i g h t  s h i e l d  and a l s o  serves  t o  s t a b l i z e  the  thermal 

envfronment of the  sample. A small h e a t e r  winding was added t o  t h e  aluminum 

s h i e l d  can when i t  was des i red  t o  make measurements a t  temperatures s l i g h t l y  

above room temperature. 

The galvanomagnetic sample, i t s e l f ,  was t i e d  t o  the  p la t form wi th  co t ton  

thread,  A l l  of the e lec t r ica l  leads (1-5  mil d ia .  copper vol tage  probes and 

3.0 m i l  dia.  copper cur ren t  leads)  were cemented t o  the  p la t form wi th  clear 
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f i n g e r n a i l  polish.  No evidence of lead  v ib ra t ion  (a.c. e x c i t a t i o n  - d.c. 

magnetic f i e l d )  was not iced i n  t h a t  the var ious types of experimentally 

measured voltages were found t o  be independent of frequency. ( 6 )  

3.1.3,2 Method of o r i e n t i n g  mounted samples 

The support  tube of the  sample holder  was f i rmly taped i n t o  a machined 

groove i n  a spec ia l ly  constructed indexing head. This indexing head, made 

of b ra s s ,  ro t a t ed  i n  a 1/2" th ick  aluminum face p l a t e  which could be s l i d  

about on a t a b l e  mounted over the dewar and magnet u n t i l  properly pos i t ioned  

and then f i rmly clamped i n  p lace  with dogs. The face p l a t e  contained 

indexing holes  (3/32" d i a , )  every 15' on a 5" dia .  c i r c l e .  The indexing 

head had a s l i d i n g  s t e e l  p in  which mated with these holes .  

head and mating the pin with the  des i red  ho le ,  the sample holder  could be 

quickly ,accurately and reproducibly indexed every 15'. 

By r o t a t i n g  the  

The angular zero reference was e s t ab l i shed  by r o t a t i n g  the  face p l a t e  

u n t i l  the  H a l l  e f f e c t  zero w a s  found and then clamping i t  i n  place.  The 

indexing head (and sample holder)  could then be indexed at 15' i n t e r v a l s  

measured from the  Hal l  e f f e c t  zero o r i e n t a t i o n ,  It is est imated t h a t  the  

indexing head gave a r e l a t i v e  o r i e n t a t i o n  accuracy of f. 1' i n  azimuth. The 

angle of e l eva t ion  of the s a q k  cur ren t  ax is  is est imated t o  be wi th in  2 3' 

of the ho r i zon ta l  (or _f- 3' of the v e r t i c a l  when appropr ia te ) .  

3.1,3.3 Temperature and environment cont ro l  

Room temperature measurements 

Room temperature measurements were made i n  an empty ( a i r  f i l l e d )  dewar. 

E l e c t r i c a l  resistivity and the  Hall e f f e c t  were the  only q u a n t i t i e s  exten- 

s i v e l y  measured a t  room temperature. The t i m e  i n t e g r a l  of Joule  power 

d i s s ipa t ion  over the elapsed measurement time r e s u l t e d  i n  a Joule  hea t  
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generated energy increment which was s u f f i c i e n t  t o  raise the  temperature of 

the sample holder  by 0.loC i n  the  most pes s imis t i c  case. 

temperature change f o r  r e s i s t i v i t y  and Hall e f f e c t  measurements on an e x t r i n s i c  

semiconductor. Some measurements were taken with the  dewar f i l l e d  with two 

l i ters  of u n s t i r r e d  kerosene. The same measurement r e s u l t s  were obtained. 

Room temperature was i n  the  range of 26 f 2 O C .  

This i s  a n e g l i g i b l e  

Low temperature me as uremen t s 

Extensive low temperature measurements were made a t  the  temperature of 

l i q u i d  n i t rogen  - 77.3'K. A s ingle ,  g l a s s  wal led dewar w a s  used as a conta iner  

f o r  the  l i q u i d  ni t rogen.  The t a i l  s ec t ion  of t he  dewar had an outs ide  diameter 

of about 1-1/8". 

l i q u i d  n i t rogen  was used f o r  most of the  measurement runs. 

measurements runs were usual ly  begun one hour a f t e r  the  sample holder  had 

reached l i q u i d  n i t rogen  temperature. The temperature of t he  sample holder  

could be monitored wi th  the i n t e r n a l  thermocouple. It was found t h a t  t he  

ba th  temperature remained constant t o  wi th in  0.2"C (which was the  p rec i s ion  

of the thermocouple measurement a t  77'K) over the  per iod of time required 

t o  make a complete measurement run - which was typ ica l ly  3 hours. The neck 

of the  dewar was blocked o f f  w i t h  a c lo th  plug. 

The dewar had a capaci ty  of 2-1/2 liters. Freshly prepared 

Magnetoresistance 

Measurements as a function of temperature 

Measurements of t he  Hall e f f e c t  and electrical  r e s i s t i v i t y  were made 

as a funct ion of temperature. This w a s  done by l e t t i n g  the  n i t rogen  evaporate 

i n  the  dewar and tak ing  measurements as the  sample holder  d r i f t e d  up i n  

temperature. 

minute near  77'K. The r a t e  of change decreased considerably as room 

temperature w a s  approached. Temperature H a l l  e f f e c t  and the e l e c t r i c a l  

The maximum r a t e  of temperature change was about 1.5OC p e r  
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r e s i s t i v i t y  could a l l  be measured wi th in  an elapsed time of about 15 seconds. 

Temperatures as high as 75OC were reached by using a small h e a t e r  winding 

wound on the aluminum s h i e l d  can. 

3.1.3.4 Thermometrv 

Copper - constantan thermocouples were used t o  measure sample holder  

temperatures over the  range 77.3'K t o  350°K. 

nylon in su la t ed  wire was used. 

so lder .  Af t e r  mounting in the  sample holders ,  the  thermocouple vol tages  

(referenced against  an ice ba th)  were checked a t  room temperature (against  

a laboratory thermonreter) and a t  l i q u i d  n i t rogen  temperature. Occasionally,  

a thermocouple would be checked at the temperature of a dry i c e  and acetone 

bath.  The temperature read by the thermocouples were cons i s t en t ly  found t o  

be accura te  within a t  least +0.5OC. 

appl ied t o  the  thermocouple output voltage.  

Premium grade(7) 136 B&S gauge 

Thermocouple beads were made with Pb-Sn 

Consequently, no cor rec t ions  were 

A t i g h t l y  packed crushed ice and t a p  water reference junc t ion  bath w a s  

A temperature conversion t a b l e  ca lcu la ted  from a National Bureau of used. 

( 8 )  Standards t a b l e  was used . 
3.1.4 Error  Analysis-Galvanomagnetic Measurements 

The var ious quanties - vol tages ,  cur ren ts  and dimensions - which are - 
needed t o  ca l cu la t e  important t r anspor t  parameters are l i s t e d  i n  Table 3.1. 

The est imated accuracy of each measurement and the  method of measurement 

a r e  a l s o  indicated.  

con t r ibu t ing  quant i ty  are properly combined, t he  following absolute  

accuracy estimates are  obtained: 

When the  probable e r r o r s  of each experimentally measured 
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- 
. TABLE 3.1 

ESTIMATED PROBABLE ERRORS OF MEASURED QUANTITIES 
USED TO CALCULATE TRANSPORT COEFFICIENTS .. 

QUANTITY METHOD OF MEASUREMENT MEASUREMENT ACCURACY 

Absolute : R e  1 at i v e  : 

T r a n s  ve rs e 
Sample Dimensions - +0.003m s ame Metric Micrometer 

Spacing of 
Voltage Probes - +o. l0mm s ame Vernier on a Travel ing 

Stage M i  cros cope 

Elect ri cal 
Currents - * 112% s ame 

- + 112% s ame 

- + 1% - + 1-112% 

Them-Mil l iameter  

Magne t i c  
F ie ld  Rotat ing c o i l  f luxmeter 

A.C. Sample 
Voltages-no Null  Preamplif ier  and Wave 

Analyzer 

A.C. H a l l  Voltage- 
with Null  - + 2% - + 1-112% Same as above 

A.C. Magneto- 
r e s i s t a n c e  voltage- 
wi th  Null Same as above - + 3% 

+ 112% - + 112% 

- * 2 1 1 2 %  

D.C. Voltages i n  
Thermal Measurements LbN type K Potentiometer 

Temperature 
Differences i n  
Thermal measure- 
ments + 3% - * 3% ‘type K Pot. and Copper 

Constantan Thermocouples 
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Electrical R e s i s t i v i t y  - + 4.3% ---- c + 1.2% Rela t ive  Accuracy 

H a l l  Constant - + 2% 

H a l l  Mobility - + 4.6% ---- - + 2.1% Relative Accuracy 

+ 4% t o  t 10% AV 
Magnetoresistance, - V0 - 
(Depending upon the  magnitude of the  H a l l .  e f f e c t  vol tage which i s  

averaged out of t h e  B(+) and B(-) magnetoresistance da ta ) .  
-+ + 

Relat ive measurement accuracies  have been ind ica t ed  when they d i f f e r  

s i g n i f i c a n t l y  from the  absolute.  

It should be mentioned t h a t  the  above e r r o r  estimates contain an inherent  

uncer ta in ty .  

ei t ies and departures from i d e a l  galvanomagnetic sample geometry - mainly 

i n  the  form of the f i n i t e  diameters of the  vol tage probes. These poin ts  have 

been discussed t o  some ex ten t  i n  the  l i t e r a t u r e  ( lo ) .  

per turba t ions  i s  d i f f i c u l t  t o  estimate. 

use the  b e s t  ava i lab le  c r y s t a l s  and the  b e s t  poss ib l e  sample prepara t ion  

technology. Measurement r ep roduc ib i l i t y  checks from sample t o  sample are of  

vital  importance i n  t h i s  context.  

This is  caused by the  poss ib le  inf luence  of sample inhomogen- 

The ex ten t  of these  

The only ava i l ab le  recourse i s  t o  

3.2 THERMAL MEASUREMENTS 

3.2.1 Thermal Conductivitv and Thermoelectric Power Measurements 

The thermal conductivity chamber i s  shown i n  Figure 3.4. The vacuum 

c ryos t a t  i s  shown as Figure 3.5. These f igu res  are l a rge ly  s e l f  explanatory.  

The monitoring thermocouple, TC-3, w a s  sometimes taped t o  the  outs ide  of the  

thermal conductivity chamber. It e s s e n t i a l l y  reproduced the  reading of the  

cold junc t ion  thermocouple TC-2. 

The ho t  junction, TC-1, and cold junc t ion ,  TC-2, thermocouples were 

c a r e f u l l y  so ldered  t o  the  bottoms of t h e i r  r e spec t ive  thermocouple w e l l s  

c 
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THERMAL AND ELECTRICAL CONTACT 
I S  MADE TO THE INDIUM PLATED CONTACT 
AREAS OF THE CRYSTAL WITH GALLIUM. ALL 
SOLDERING IS DONE AT ROOM TEMPERATURE 

VACUUM PORTS 

ELECTRICAL INPUT 

HOT JUNCTION 
THERMOCOUPLE CURRENT LEAD FOR 

ELECTRICAL 
CONDUCTIVITY 
MEASUREMENT 
NO. 44 B and S 
COPPER 

COLD JUNCTION 
THERMOCOUPLE 
NO. 36 B and S 
COPPER - CONSTANTAN 
THERMOCOUPLES ARE USED 
THE INSULATION IS NYLON 

Scale: FULL SIZE Material: GOLD PLATED COPPER 

Fig. 3t4 Thermal Conductivity Chamber 
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CLAMPED (NOT SHOWN) 
O-RING AND APIEZON 

THERMOCOUPLE AND 
'CTRICAL LEADS 

TYPE N GREASE SEAL 

APIEZON TYPE W WAX 
--- - -  / 

BLEEDER VALVE 
NO. 304-75.75. 
PRESSURE FITTING 
ASSEMBLY THERMOCOUPLE 

- 
---- - VACUUM GAUGE 

I - I 

E.... ."" I --1. 
THIN WALLED 

1 TO: 
LIQUID NITROGEN 
COLD TRAP AND 
14 C.F.M. FOREPUMP / L l l P V C I  C I I  \ /CD TI  ID  

\RAW RI n r y  

COMPRESSED 
SPRING 

PLASTIC HEAT 
INSULATION 

THERMAL -- 
C O N  DUCT IVlTY 
CHAMBER 

S.S. TUBING 

COPPER CHAMBER- 

FOR THESE MEASUR 
'AT ER 
iMENTS 

Fig. 3.5 Vacuum Cryostat for Thermal 
Conductivity Measurement 

/THERMOCOUPLE AND 
ELECTRICAL LEADS 

Approx. Scale: 

1 / 2  FULL SIZE 
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(0.040" dia . ) .  The thermocouple beads are wi th in  0.015" of t he  sample 
a 

surfaces .  

With a sample i n  p lace  and the c ryos t a t  a t  O'C, the  thermal system 

would reach a s teady-state  condieion i n  about 75 minutes a f t e r  a change was 

made i n  the  inpu t  power l e v e l  t o  t h e  hea te r .  

The hea t  power conducted by the sample is  equal t o  the  electrical  power 

inpu t  t o  the  hea te r  minus the  s t r a y  power lo s ses  ( lead  hea t  conduction, 

r ad ia t ion  loss, r e s idua l  gas convection losses) .  The s t r a y  lo s ses  were 

determined by cementing a polyfoam block - the  same s ize  as a thermal con- 

d u c t i v i t y  sample - i n  p lace  and measuring the  electrical  power input  required 

t o  maintain a given h e a t e r  temperature. This los s  was determined (on seve ra l  

ocassions)  t o  be: 

0.85 f. 0.05 milliwatts 
'K 

over  a temperature d i f f e r e n t i a l  range of 2 through 8'C. The r e s idua l  gas 

pressure  i n  the  c ryos t a t  w a s  4 t o  8 p f o r  t h i s  ca l ib ra t ion .  

3.2.2 Thermal Measurement Instrumentation 

The electrical instrumentation f o r  the  thermal measurements i s  shown 

i n  Figure 3 . 6 .  For e l e c t r i c a l  i s o l a t i o n ,  the  reference junct ions of the  

thermocouples were i n s e r t e d  i n t o  t h i n  walled (1/2mm) g lass  tubes which were 

f i l l e d  wi th  Dow-Corning type 304 s i l i c o n e  hea t  s ink  compound. These tubes 

were then taped t o  the  bulb of the bath temperature monitoring, mercury 

thermometer. This assembly was then i n s e r t e d  a t  least 6" i n t o  a dewar 

f i l l e d  with w e l l  packed, f i ne ly  crushed ice and water. 

The electrical r e s i s t i v i t y  of the  thermal samples was determined by 

a "two terminal" measurement. A d.c. e l e c t r i c a l  cur ren t  was passed through 

the  sample by means of a 144 B&S gauge copper w i r e  a t tached t o  the  h e a t e r  
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1.00 Q 
0 

o HEATER 
580 n 1 TO 9K 

100 €I VALUES 
11 DECRETE 

25 V '.D.C. 

- A 
V~~~~~~~~~~~~~ 

POWER 
0 REV. SW. 

0 OTC-2 (T COLO) 

0 TC-2 

0 

0 - 
TC-I (T HOT) 

TC-3 
0 OTC-3 (T MONITOR) 1s e:i*bp* 

a) SWITCH BOX AND HEATER POWER CONTROL CIRCUITRY 

C 0 NSTAN TAN 
CRYOSTAT a( 2 ICEBATH 

0 0  

COPPER SWITCH BOX 
TERMINALS-ROOM TEMP. 

b) THERMOCOUPLE CIRCUIT 

LEADS FROM 
CRYOSTAT ' , 25  V.D.C. REGULATED - SWITCH BOX AND POWER SUPPLY - 

I 
' 

HEATER POWER 

op c I 
ICE 
REFERENCE POTENTIOMETER -. 
BATH 

L and N TYPE K-3 L and N MODEL 2430-C 
GALVANOMETER 

_. .. . . I J I  I 

c) BLOCK DIAGRAM M INSTRUMENTAflON 

Fig. 3.6 Thermal ConductiJtty Instrumontation 
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block. The thermal conduct ivi ty  chamber served as the  r e t u r n  path. This 

cur ren t  was measured with the  thermo-milliameter descr ibed i n  Sect ion 3.1.2. 

The r e s u l t i n g  vol tage was measured with the  copper leads of the  thermocouple 

p a i r  - TC-1 and TC-2. The L&N type K potentiometer was  used f o r  t h i s  measure- 

ment. This same p a i r  of copper leads was a l s o  used t o  read thermoelec t r ic  power 

vol tages .  Readings were taken over roughly a decade v a r i a t i o n  of cur ren t  

l e v e l s  and f o r  both current p o l a r i t i e s .  No non-linear behavior was observed. 

E l e c t r i c a l  resis tivies determined i n  t h i s  manner were independent of sample 

length.  They were a l s o  i n  good agreement with values measured on galvano- 

magnetic samples. Thus, the indium p la t ed  and gall ium so ldered  contac ts  had 

n e g l i g i b l e  e l e c t r i c a l  res i s tance .  

The measured thermal conduct iv i t ies  were found t o  be independent of sample 

length.  Hence, the  thermal res i s tance  of the  contacts  w a s  neg l ig ib l e  a lso.  

3.2.3 Thermometry 

The premium grade of 836, nylon in su la t ed ,  coppercons tan tan  thermocouple 

wire described i n  Sect ion 3.1.3.4 was a l s o  used i n  the  thermal conduct ivi ty  

apparatus.  Af t e r  i n s t a l l a t i o n ,  the thermocouples were checked i n  the  following 

way. The hea t  source was soldered d i r e c t l y  t o  the  hea t  s ink .  The monitoring 

thermocouple, TC-3 was taped t o  the ou t s ide  of the  chamber - as i l l u s t r a t e d  i n  

Figure 3.4. The chamber w a s  i n s t a l l e d  i n  the c ryos t a t  and evacuated. The 

c r y o s t a t  was placed deep i n  a 7 l i t e r  dewar f i l l e d  with t ap  water. 

12 hour e q u i l i b r a t i o n  period, the th ree  thermocouples were found t o  read the  

same temperature (about 21OC) t o  wi th in  one microvolt  (40.5 pV/"C S e n s i t i v i t y  

a t  t h i s  temperature). The cryos ta t  w a s  then immersed i n  crushed i c e  and water. 

A t  O'C, t he  outputs  of the  three thermocouples were found t o  agree wi th in  2 V 

(38.7 pV/OC s e n s i t i v i t y  a t  O'C). On the  b a s i s  of s e v e r a l  experiments of t h i s  

Af te r  a 

r 
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s o r t ,  i t  is f e l t  t h a t  the  temperature d i f f e r e n t i a l s  (A?= rhot-Tcold) were 

measured t o  an accuracy of a t  l e a s t  O.lO°C.  

usual ly  th ree  f o r  each sample o r i e n t a t i o n  - were taken with temperature 

d i f f e r e n t i a l s  of 1.5 t o  4°C. 

thermal conduct iv i t ies  ca lcu la ted  f o r  the  d i f f e r e n t  temperature grad ien ts  

were cons is ten t ly  found t o  agree t o  with a t  least f. 2%. 

confidence t o  the accuracy of the  thermometry. 

3 . 2 . 4  Error  Analysis 

Thermal conduct ivi ty  readings - 

Occasionally,  AT ranged as high as 8OC. The 

This adds more 

Table 3 . 1  presents  the q u a n t i t i e s  which are needed t o  c a l c u l a t e  t he  

t ranspor t  parameters along with t h e i r  es t imated accuracies  of measurement. 

The cormnents of Section 3 . 1 . 4  are p e r t i n e n t  here  a l so .  From these  measure- 

ments estimates, t h e  following absolute  probable e r r o r  estimates on the 

t ranspor t  parameters a r e  obtained: 

Thermal conduct ivi ty  : f. 4% 

Thermoelectric power : f. 3%. 
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CHAPTER 4 

PRESENTATION AND DISCUSSION OF EXPERIMENTAL RESULTS 

- 4.1 INTRODUCTION 

This chapter  presents  and discusses  the  r e s u l t s  of the  following types 

of experiments on p-type ZnSb: 

1. Annealing experiments. 

2. Thermal measurements - thermoelec t r ic  power and 

thermal conduct ivi ty .  

3. H a l l  e f f e c t  and e l e c t r i c a l  r e s i s t i v i t y  measurements 

between 77.3 and 325OK. 

4. Anisotropy of the  H a l l  e f f e c t .  

5 .  Magnetic f i e l d  dependences of the  Hall and magneto- 

r e s i s t ance  e f f e c t s  . 
6. Extensive magnetoresistance measurements a t  77.3'K. 

Pe r t inen t  comments on experimental  procedure are included when t h i s  i s  

f e l t  t o  be necessary. 

The following convention i s  used t o  l a b e l  the  c r y s t a l  axes: 
0 

1 - <loo>  = a = 6.20A 

2 = <010> = b = 7.74A 

3 = cool> = c = 8.10A 

0 

0 

The fol lowing convention i s  used regarding the  meaning of the  subsc r ip t s  

on the  elements of the  galvanomagnetic tensors:  

K i J  

ai j 

1. Thermal conductivity:  

K (heat f l u x  component) ( temperature grad ien t  component) 

2. Thermoelectric power: 

a ( e l e c t r i c  f i e l d  component) ( temperature grad ien t  component) 



p i J  3. E l e c t r i c a l  r e s i s t i v i t y :  

' ( e l e c t r i c  f i e l d  comp.) ( e l e c t r i c  cu r ren t  densi ty  comp.) 

4. Hal l  coe f f i c i en t :  Rijk = pijk 

' (elec.  f i e l d  comp.) ( e l e c t r i c  cur ren t  dens. comp.)~ 

(magnetic f i e l d  comp.) 

5 .  Magnetoresistance coef f ic ien ts :  'i jk2 

' (elec.  f i e l d  comp.) ( e l e c t r i c  cu r ren t  densi ty  comp.)x 

(magnetic f i e l d  comp.) (magnetic f i e l d  comp.) 

Appendix 1 shows t h a t  t h e  t ranspor t  tensors  have the following poss ib le  

non-zero elements when they a re  re fer red  t o  the p r i n c i p a l  coordinate system 

of the c rys t a l :  

1. Thermal conductivity (3): 

11' K22' K33 K 

2. Thermoelectric parer (3): 

a all, a22' 33 

3. E l e c t r i c a l  r e s i s t i v i t y  (3): 

pii* '22' '33 

4. Hall  c o e f f i c i e n t s ,  Rijk = pijk ,  (3) : 

'213 
I -  

'123 

F I? P -  

312 132 

'231 = - '321 

where Onsager symmetry r equ i r e s  the ind ica ted  e q u a l i t i e s .  

5 .  Magnetoresistance coe f f i c i en t s  (12): 

'1111 '2211 '3311 '1212 

'1122 '2222 '3322 '1313 

'1133 '2233 '3333 '2323 
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4.2 ANNEALING EXPERIMENTS ON UNDOPED CRYSTALS OF P-TYPE ZnSb 

- 4 2 . 1  Introduct ion 

As the  measurements on undoped s i n g l e  c r y s t a l s  of p-type ZnSb progressed, 

s e v e r a l  puzzeling occurrences were not iced.  

1. Subjecting the  c r y s t a l s  t o  temperatures of 50°C f o r  15 t o  30 minutes 

i n  the  course of  Hall e f f e c t  measurements would increase  the  apparent 

room temperature hole  concentrat ion by 5 o r  10%. This "added" number of 

ho les  would s l w l y  disappear with t i m e .  

2. Carefu l ,  d. c. potent iometer  measurements (+ 1/2% r e l a t i v e  accuracy) 

of the  electrical r e s i s t i v i t i e s  of a set  of samples ind ica t ed  t h a t  the  

r e s i s t i v i t i e s  were increas ing  by a few percent  over a per iod of several 

weeks. 

Exposing a new c r y s t a l  su r f ace  l a y e r  by sandb las t ing  away 10 o r  20 mic- 

rons of the  surface had no e f f e c t  on the  apparent ly  changing hole  concentrat ion.  

Kot and Kretsu' l)  and Mazelsky a l s o  q u a l i t a t i v e l y  observed t h a t  hea t ing  

an undoped ZnSb c rys t a l  would increase  the  apparent ho le  concentrat ion and 

t h a t  the  hole  concentration would then slowly decrease with s to rage  a t  room 

temperature. 

A l l  of t h i s  provided motivation f o r  the  fol lowing anneal ing experiments. 

The following experiments se rve  as the  f i r s t  recording of a phenomena t h a t  

has only been very b r i e f l y  mentioned and never charac te r ized  i n  the  

A p laus ib l e  model i s  proposed f o r  t he  observed phenomena. l i t  e rat ure 

However, t h i s  model must be  regarded as be ing  specu la t ive ,  s i n c e  needed b a s i c  

information, such as  the e l e c t r i c a l  e f f e c t s  of depar tures  from the  ZnSb 

s to i ch iomet r i c  composition and the  magnitude of the  s e l f  d i f f u s i o n  c o e f f i c i e n t s  

are not  a v i l a b l e  f o r  q u a n t i t a t i v e  tests of the  v a l i d i t y  of the  model. 

. ( 1 , 3 , 4 )  
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- 4.2.2 Experimental Procedure 

Galvanomagnetic sample ba r s  were annealed i n  an open tube furnace. The 

ambient atmosphere w a s  sometimes n i t rogen  but  o f t e n  argon a t  a flow rate of 

less than one s.c.f.h. A dry i c e  and acetone cold t r a p  was used i n  the  gas 

l i n e .  The r e s u l t s  d id  not  seem t o  depend upon which gas was used. Many of 

the  sample bars  were annealed w i t h  t h e i r  e l e c t r i c a l  contacts  and copper lead 

w i r e s  i n  place,  s ince  they had already been used f o r  o t h e r  measurements. In  

such cases, the  annealing temperature did not  exceed 175OC i n  order  t o  avoid 

melt ing the contacts .  The contact technology has been discussed i n  Sect ion 

2.6.3. I n  order  t o  e s t a b l i s h  that  the  observed phenomena were not  caused by 

contac t  d i f fus ion ,  a number of bars were annealed without contac ts  - t he  

con tac t s  being appl ied j u s t  before e l e c t r i c a l  measurements were made. 

less bars  were annealed a t  temperatures a s  high as 24OOC.  

read with a chrome1 - alumel  thermocouple t h a t  had been ca l ib ra t ed  a t  100°C 

and O°C. 

Contact- 

Temperatures were 

The Hall e f f e c t  and the  e l e c t r i c a l  r e s i s t i v i t y  were measured with the 

a.c. apparatus described i n  Section 3.1.2. Sample recovery was monitored a t  

room temperature through per iodic  Hal l  measurements. Af t e r  annealing, samples 

were s t o r e d  i n  the  ordinary room atmosphere under dust  covers. 

A t yp ica l  experimental  run cons is ted  of measuring the  room temperature 

e l e c t r i c a l  r e s i s t i v i t y  and H a l l  c o e f f i c i e n t ,  demounting from the  sample holder ,  

washing i n  t r i ch lo re th lyene ,  acetone and methyl a lcohol ,  annealing, quenching 

t o  room temperature ( t i =  required,  5 t o  10 minutes),  remounting i n  the  sample 

holder ,  and monitoring the Hall e f f e c t  as a funct ion of t ime .  The f i r s t  

e l e c t r i c a l  measurements were taken wi th in  1 / 3  t o  1 hour of the  moment when the  

temperature dropped t o  end the  annealing cycle.  
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Af t e r  i n i t i a l  pos t  anneal ing measurements had been made, t he  su r faces  

of several of the samples were sandblasted.  About 10 microns of t h e  su r face  

was removed. This had no e f f e c t  on the  change i n  H a l l  c o e f f i c i e n t  o r  

r e s i s t i v i t y  which was caused by annealing. Thus, i t  seems as though a bulk 

e f f e c t  was observed. Annealing d id  not  change the  H a l l  mobi l i ty  appreciably.  

Equilibrium condi t ions , a t  a given anneal ing temperature,  were e s t ab l i shed  

i n  about 6 hours.  This was e s t ab l i shed  by reannea l ing  seve ra l  of t h e  samples 

(with contac ts )  for  an add i t iona l  10 t o  24 hours a t  t h e i r  respec t ive  anneal ing 

temperatures. Some anneal ing cycles  ran f o r  72 hours. No change i n  the  

corresponding experimentally measured hole  concentrat ion w a s  noted. 

With one exception, the  samples which were annealed without  e lec t r ica l  

The width of these  sidearms contac ts  i n  place were provided with sidearms. 

( ~ 2 . 0  mm) was equal t o  the width of the main body of t he  sample. 

of a sidearm w a s  equal t o  i t s  width. This i s  a r a t h e r  non-ideal s idearm 

geometry, bu t  i t  was necess i t a t ed  by the b r i t t l e  na tu re  of ZnSb. 

The length  

Electrical  

contac ts  were appl ied with a hand he ld  so lde r ing  i r o n  i n  the  form of $1 mm dia .  

s o l d e r  dots  a t  the end of t he  sidearms. The s idearm samples were subjec ted  

t o  the  same experimental procedure already ou t l ined  except t h a t  a l l  traces of 

lead-t in  s o l d e r  contact  material were removed by sandb las t ing  before  an anneal- 

i n g  cycle  took place. The one exception, i d e n t i f i e d  as C-1081-C AN-2, was a 

simple b a r  (1.2 m wide) which w a s  annealed wi thout  con tac t s ,  had the  above 

descr ibed contacts  appl ied  d i r e c t l y  t o  i t s  su r face ,  was measured and then 

reannealed with these contac ts  i n  place.  Thus, C-1081-C AN-2 had e lectr ical  

contac ts  t h a t  were from 5 t o  10 times the  diameter  (a.1 mm) of t he  usual  ' 

galvanomagnetic sample vol tage contac ts  (descr ibed  i n  Sec t ion  2.6.3). 
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. - 4.2.3 Experimental Resul ts  

The apparent ho le  concentration was obtained by simply i n v e r t i n g  the  

The observed carrier concentrat ions measured H a l l  c o e f f i c i e n t ,  p = 1 / R q .  

are p l o t t e d  as a funct ion of the  reciprocal  annealing temperature i n  Figure 

4.1. The s lopes of the s t r a i g h t  l i nes  correspond t o  an apparent a c t i v a t i o n  

energy of 1.0 ev. The p a r t i c u l a r  Hall c o e f f i c i e n t  which w a s  measured f o r  each 

sample i s  ind ica t ed  along with each sample i d e n t i f i c a t i o n .  

The poin ts  which were obtained f o r  the  con tac t l e s s  samples l i e  below 

the poin ts  which were obtained for t he  samples annealed with the  contacts  

i n  place.  It is bel ieved t h a t  t h i s  i s  due t o  a d i f fe rence  i n  the  gross 

geometries of the  two types of samples. When one pa i r (o f  the  two p a i r s )  of  

sidearms was removed and replaced by the  usual galvanomagnetic contac ts  

(diameter q . 1  mm - r e f e r  t o  Section 2.6.3), the  nreasured hole  concentrat ion 

was about 30% l a r g e r  than t h a t  measured with the  remaining sidearm p a i r .  

This w a s  found t o  be t r u e  i n  two checks of t h i s  s o r t .  Thus, the  curve f o r  

t he  sidearm samples might l og ica l ly  be t r a n s l a t e d  upward t o  the  pos i t i on  

shown by the  dot ted  l i n e  shown on Figure 4.1. It is  f e l t  t h a t  the  remaining 

discrepancy between the curves can probably be explained i n  term of f u r t h e r  

geometrical  e f f e c t s .  This discrepancy is  probably n o t  due t o  contac t  

d i f fus ion  e f f e c t s  s ince  both s t r a i g h t  l i n e s  have the  same s lope  - a r a t h e r  

f o r t u i t o u s  happening i f  t he  upper curve was ac tua l ly  due t o  d i f fus ion .  

Furthermore, checks such as annealing samples with one sidearm p a i r  (no 

contac ts )  and one set of the  usual contac ts  produced r e s u l t s  which were 

e n t i r e l y  cons i s t en t  wi th in  the  framework of t he  geometry e f f e c t  mentioned 

above. F ina l ly ,  the  po in t  f o r  c r y s t a l  C-1081-C sample AN-2, annealed with 

con tac t s  i n  p lace ,  a c t u a l l y  l i e s  c l o s e r  t o  the  lower curve ( con tac t l e s s  



- 70- 

, 
5 1017 

1 I I I I 

4 

3 

2 
c) 
I 

5 
I 

c 
v) 

W 
Z 
n 

$ 9  I 

I 8 

7 
-[r !u 6 

Q 5  

4 

3 

2 x l 0 l C  

I.0e.v. 

I I I I I 

2 3 4  IO-^ 

Identification of Samples: 
@ Samples Annealed With 

Electrical Contacts in Place: 

Crystal C-1109-A: 
e I Sample I 

e 2 I1 2 
R312 
I@ 

e 3 I' 3 11 

e 4 4 II 

e 5 5 
Crystal C-1081-C: 
0 Sample GV-6-2 R132 

I1 

V I " AN-2 R132 
+ 3 I' AN-I R123 
Crystal C-1076-A: 

A I Sample 5 R132 
A 2 I' I 
Sidearm Samples Annealed Without 
Electrical Contacts in Place: 

Crystal C-1068-B : 
x Sample 

Crystal C-1081-C: 
+ 2-Sample AN-! R123 
+ 3-Sample AN-[ R123 
( Reproducibi I i ty Check) 

@ Bar-Type Sample Annealed Without 
Electrical Contacts in Place: 

It  

I R123 

V 2 C-1081-C Sample AN-2 R,32 

I I I 
7270 C 2270 c 60' C 

RECIPROCAL ANNEALING TEMPERATURE -( K )-' 

Fig. 4.1 Hole Concentration vs. Reciprocal 
Annealing Temperature - p-Type ZnSb 



-71- 

v) 
M 
I 
0 

A 
c 

c 

v) 

4 
0 
I 
II 
c 

9) 
P x 
7 n 

I- 

: 



- 72- 

samples) than the upper. 

A l l  of t he  above poin ts  can be c l a r i f i e d  by f u r t h e r ,  c a r e f u l  experiments. 

What has been es tab l i shed  by Figure 4.1 i s  t h a t  the ho le  dens i ty  can be  changed 

by anneal ing i n  an i n e r t  atmosphere and t h a t  the  r e s u l t a n t  experimental  po in ts  

on a log  p vs. - p l o t  i nd ica t e  t h a t  the process has an a c t i v a t i o n  energy of 

about 1.0 ev. 

1 
T 

When the  annealed samples were s t o r e d  a t  room temperature, i t  was observed 

t h a t  the  hole  concentration decreased with inc reas ing  time. A t y p i c a l  observed 

r e s u l t  i s  shown as Figure 4.2. The o rd ina te ,  W ,  i s  equal t o  the  f r a c t i o n  of 

excess holes  (introduced by annealing) t h a t  has disappeared a t  a given time, t. 

I t  i s  seen t h a t  W approaches uni ty  (complete sample recovery) assymptot ical ly .  

The recovery is  90% complete i n  100 hours.  This was the  f a s t e s t  observed r a t e  

of recovery. A t  the opposite extreme, o the r  samples would only reach 40% 

recovery i n  100 hours and would seem t o  approach 90% recovery i n  1000 t o  3000 

hours - as was estimated by ex t r apo la t ing  t h e i r  recovery curves. This s o r t  of 

recovery phenomena was e x p l i c i t l y  observed i n  8 samples. Once again,  t h i s  

phenomena was no t  changed by sandblas t ing  a f r e s h  su r face  on seve ra l  of the  

annealed samples. 

4.2-4 Discussion of Experimental Resul ts  

A t e n t a t i v e  explanation of what may be happening can be b r i e f l y  s t a t e d .  

This model i s  e s s e n t i a l l y  the  same as t h a t  advanced f o r  the  s i m i l a r  behavior 

of p-type lead  t e l l u r i d e  . ( 5 )  

This model s t a t e s  t h a t  Figure 4.1 i s  e s s e n t i a l l y  a representa t ion  of the  

ZnSb retrograde sol idus l i n e  on the  Zn-Sb phase diagram. The ZnSb l a t t i c e  

can be thought of as containing more antimony a t  the  h igher  temperature. Of 

course,  i t  i s  uncertain whether excess antimony o r  z inc  is incorporated i n t o  

, 
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the  la t t ice  a t  h igher  temperatures. 

defec t  i n  the  l a t t i c e  is a l s o  open t o  speculat ion.  A t  any rate, a t  h igher  

temperatures,  i t  is poss ib le  t h a t  addi t iona l  antimony is suppl ied by c r y s t a l  

d i s loca t ions  which act as a source o r  a s ink  f o r  antimony depending upon the  

annealing temperature involved and the  exac t  shape of the  ret rograde s o l u b i l i t y  

l i n e .  

The na ture  of the  e l e c t r i c a l l y  active poin t  

Hence when a c r y s t a l  is  annealed a t  an e leva ted  temperature, a new con- 

cen t r a t ion  of e l e c t r i c a l l y  ac t ive  antimony (or  z inc)  is incorporated i n t o  the  

lat t ice and the hole  concentration increases .  This new equi l ibr ium is reached 

i n  a f a i r l y  s h o r t  time - seve ra l  hours. Afterwards, when the  c r y s t a l  is  allowed 

t o  remain a t  room temperature, the antimony ( o r  z inc)  p r e c i p i t a t e s  ou t  on dis-  

loca t ion  l i n e s  i n  the  c r y s t a l  as e l e c t r i c a l l y  n e u t r a l  atoms. This room t e e  

pera ture  p r e c i p i t a t i o n  process i s  slow- t ak ing  hundreds o r  thousands of hours. 

Ham(6) has presented a theory fo r  d i f fus ion  a s s i s t e d  p rec ip i t a t ion .  The theory 

p r e d i c t s  a s lope  of t2’3 f o r  the  i n i t i a l  po r t ion  of the  p r e c i p i t a t i o n  curve and 

a long t i m e  l i m i t i n g  behavior of (1-exp Kit), where K 

given sample and temperature. 

is  a constant  f o r  a 1 

The s h o r t  time por t ion  of the recovery curve, Figure 4.2, does have an 

i n i t i a l  s lope  of 0.67. I t  should be noted t h a t  the concentrat ion of ho les  

a t  zero t i m e  p(t=O), is  needed in orde r  t o  ca l cu la t e  the  p r e c i p i t a t e d  f r a c t i o n ,  

W, accura te ly  - espec ia l ly  f o r  shor t  times. Since the  f i r s t  Hall measurement 

took p lace  from 1 /3  t o  1 hour after the  annealing w a s  stopped, p(t=O) had t o  

be approximated. This was done by assuming t h a t  K=Kot2’3 i n i t i a l l y  (where KO 

is  a constant  f o r  a given sample and temperature) and using the  f i r s t  two 

experimentally measured hole  dens i t ies  t o  compute p(t-0).  This value then 

w a s  used t o  compute W a t  a l l  l a t e r  times. This procedure might be c r i t i c i z e d  
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f o r  the  sample shown i n  Figure 4.2, s ince  only t w o  add i t iona l  po in ts  l i e  near 

the  t2/3 por t ion  of the  curve. 

e spec ia l ly  those with slower recovery rates - as many as s i x  addi t iona l  po in t s  

were found t o  l i e  on the  t2l3 l i n e .  Hence the presence of a t2/3 behavior 

i s  reasonably well  e s t ab l i shed  f o r  the  s h o r t  time recovery. The value f o r  

p(t=-) w a s  assumed t o  be 1 x 10l6  as was determined by an ex t rapola t ion  of 

the s t r a i g h t  l i nes  of Figure 4.2 t o  room temperature. 

However, when used with o t h e r  samples - 

The long ti= behavior of the  recovery was found t o  follow n e i t h e r  (1-exp K t) 1 
nor  the  (1-exp K 2 t  2/3) with which Harper") w a s  ab le  t o  f i t  the  observed 

p r e c i p i t a t i o n  of carbon and n i t rogen  i n  cold-worked alpha i ron .  

form - but  no t  the assymptotic na ture  - of the  long time por t ion  of the  

recovery curve was found t o  vary s l i g h t l y  between samples. This i s  not  too 

s u r p r i s i n g  s ince  Ham(6) has made the observat ion t h a t  the  long term mathematical 

form of the  p rec ip i t a t ion  curve can mirror  the  type of sys temat ic  agglomeration 

of d i s loca t ions  present i n  the  sample. H i s  theory was developed f o r  a uniform 

ar ray  (etch p i t s  forming a two dimensional square a r r ay )  o r  a random ar ray  of 

d i s loca t ions .  The magnitude of the  amount of recovery a t  a given time is 

a l s o  s e n s i t i v e  t o  the  d i s loca t ion  dens i ty  - being g r e a t e r  f o r  h igher  dis-  

loca t ion  dens i t i e s ,  as might be expected. 

curves A and B of Figure 4.2 were determined by f i t t i n g  the  curves t o  the  da t a  

at t = 10 h r s  and t = 1.25 h r  respect ively.  

The exact  

The values of K1 and 5 used i n  

In  summary, i t  has been e s t ab l i shed  t h a t  t he  ho le  concentrat ion i n  p- 

type ZnSb can be changed by anneal ing a t  e l eva ted  temperatures i n  an i n e r t  

atmosphere. This phenomena does not  b a s i c a l l y  o r i g i n a t e  as contac t  d i f fus ion  

o r  as a sur face  e f f e c t .  The observed time recovery a t  room temperature 

exh ib i t s  the  general func t iona l  form expected f o r  stress a s s i s t e d  p r e c i p i  t- 
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I -  

a t i o n  on c r y s t a l  d i s loca t ions .  

In order  t o  more f i rmly e s t ab l i sh  the o r i g i n  of t h i s  behavior and a more 

exact  model, the following types of experiments are necessary: 

1. The i d e n t i t y  of the  e l e c t r i c a l l y  a c t i v e  atomic spec ies  must be 

determined. This might be done by in t roducing  departures  from the  ZnSb 

stoichiometry with vapor annealing experiments. This would e s t a b l i s h  the 

composition f ine  s t r u c t u r e  on the  ZnSb so l idus  l i n e  - a t  least a t  

e leva ted  temperatures. 

i n  attempting t o  produce n-type ZnSb. 

2. The d i f fus ion  coe f f i c i en t s  (3  i n  number) should be measured f o r  the  

e l e c t r i c a l l y  a c t i v e  atomic species. This should be done a t  o r  near  t he  

temperature a t  which the  sample recovery i s  monitored. 

3. Careful determinations should be made of the  dens i ty  and geometrical  

grouping of the  d i s loca t ions  present  i n  each c r y s t a l  sample used i n  

annealing experiments. 

4. The method of monitoring the hole dens i ty  should,  i d e a l l y ,  be ab le  

t o  give a rap id  hole  densi ty  determination a t  any time during o r  a f t e r  

the  annealing cycle .  

The phenomena observed above might possibly be the cause of the high 

This would a l s o  be a promising approach t o  t r y  

A s u i t a b l e  method must be found. 

temperature i n s t a b i l i t i e s  which have been observed i n  c a s t  ZnSb thermo- 

elements ( r e f e r  t o  Sect ion 1.1’. It i s  a l s o  obvious t h a t  the above phenomena can 

have a 2rofound inf luence  on t h e  r e s u l t s  of electrical measurements on 

undoped ZnSb c r y s t a l s .  

temperature i n  a matter of hours a f t e r  growth. 

i n  a newly grown c r y s t a l  may take weeks o r  months t o  e q u i l i b r a t e  a t  room 

temperature. 

For example, c r y s t a l s  are usual ly  cycled down t o  room 

But, the  hole  concentrat ions 

This complicates the determination of the  anisotropy i n  the  
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galvanomagnetic proper t ies  of ZnSb. 

&3 THERMAL MEASUREMENTS 

4.3.1 Introduct ion 

The following measurements were made with the  apparatus described i n  

Sect ion 3.2.2. The cold junc t ion  temperature was O°C. The temperature 

d i f f e r e n t i a l s  (AT = THot 

AT w a s  as high as 8OC. 

d i f f e r e n t i a l  which was imposed. As explained i n  Sect ion 3.2.2, the  electrical  

conduct ivi ty  of t h e  thermal samples w a s  determined by a two terminal  resistance 

measurement. The thermal and e l e c t r i c a l  r e s i s t ances  of the  sample contac ts  

were found t o  be negl ig ib le .  

4.3.2 Thermoelectric Power Measurements 

) used ranged between 1.5 and 4OC. On occasion 

The reported r e s u l t s  a r e  independent of the  temperature 

- TCold 

Figure 4.3 presents  the ueasured thermoelectr ic  powers as a funct ion of 

e l e c t r i c a l  conductivity.  Good s t r a i g h t  l i n e s  are obtained on the  s e d -  

logari thmic p lo t .  Note t h a t  4 determinations of the  anisotropy of the  thermo- 

electric power were made a t  4 d i f f e r e n t  doping l eve l s .  A t  a given doping level, 

the  same s i n g l e  c r y s t a l  cube was measured along th ree  successive axes t o  

r e l i a b l y  determine the anisotropy. The quoted thermoelec t r ic  powers are 

referenced t o  the thermoelectr ic  power of copper, + 2.7 pV/OK a t  O°C . (8)  

It is  seen tha t  the thermoelectr ic  power of p-type z inc  antimonide i s  

Although i s o t r o p i c  t o  within the  est imated experilnental accuracy of 2 3%. 

the  poin ts  do not  appear on Figure 4.3 because the  electrical conduc t iv i t i e s  

were no t  determined, the  thermoelectr ic  power of undoped p-type ZnSb 

( a  = + 680 pV/OK) was found t o  be i s o t r o p i c  a l so .  

Using the  r e su l t s  of Appendix 2, Sect ion A.2.7, Eq. A.2.84, the  thermo- 

e l e c t r i c  power fo r  a s i n g l e  general  e l l i p s o i d  valence band ( a n t i c i p a t i n g  the  
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discussion of Chapter 5 )  can be w r i t t e n  as: 

The no ta t ion  i s  explained i n  Appendix 2. Thus, i t  i s  seen t h a t  t h e  thermoelectr ic  

power does no t  depend upon the  mass anisotropy of t he  valence band. The thermo- 

e l e c t r i c  power w i l l  be i s o t r o p i c  i f :  

1. The re laxa t ion  time, T i s  a s c a l a r  - i n  p a r t i c u l a r  a scalar funct ion 

of energy: 

ii' 

2. The re laxa t ion  t i m e  tensor ,  which i s  assumed t o  be diagonal i n  the  

same coordinate system as the valence band e f f e c t i v e  mass t enso r ,  can be 

expressed as a diagonal mat r ix  of constants  times some funct ion of energy: 

Assuming t h a t  F(E) = E', Eq. 4 . 1  can be evaluated t o  give: 

k EF 
[ ( r  + 5 / 2 1  - El = -  

ii q 
a ( 4 . 2 )  

where nondegenerate s t a t i s t i c s  a r e  assumed. Energy i s  measured from the  edge 

of the  valence band. Hence, E i s  numerically nega t ive  i n  the  above. Assuming 

t h a t  la t t ice  s c a t t e r i n g  predominates a t  O°C ( r e f e r  t o  Sect ion 4 . 3 ) ,  F(E)=E 

and r = - 1 / 2  i n  Eq. 4 . 2 .  Hence: 

F 
-1/2 

a ii = 8 . 6 3  x [ 2  - q ]  v o l t s  / O K  ( 4 . 3 )  

where, rl is  the  reduced Fermi l e v e l ,  EF/kT. 

Fermi l e v e l  of c r y s t a l  C-1078-C l i e s  i n  the  energy gap, about 3kT from the  

This equat ion ind ica t e s  t h a t  the  
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. 

valence band edge. Hence, conduction processes i n  t h i s  c r y s t a l  - on which the  

major po r t ion  of the magnetoresistance d a t a  w a s  taken - could be described 

wi th  c l a s s i c a l  s ta t is t ics .  

Using the  exact, Fermi-Dirac func t ion ,  eva lua t ion  ( l o )  of Eq. 4.1 wi th  the  

assumption t h a t  lat t ice s c a t t e r i n g  dominates, Table 4.1 w a s  constructed: 

Crys ta l  

TABLE 4.1 

APPROXIMATE FERMI LEVEL LOCATIONS AT O°C 

Thermoelectric Power Location of F e d  L e v e l  - 
Negative Values are i n  t h e  
Energy Gap 

C-1081-C 680 pV/'K -6kT 

C- 10 7 8-C 4 30 -3 

C-1082-A 345 -2 

C- 1 11 7-A 250 -0.7 

C- 10 75-B 175 w.5 

2 Ant i c ipa t ing  the  d iscuss ion  of Section 4.3.4, the maximum of a u ( thus ,  

f o r  p r a c t i c a l  purposes, t he  maximum thermoelec t r ic  f igu re  of merit) occurs a t  

a33 = 740 (ohnrcm)-l which corresponds t o  a = 195 pV/OK. A t  t h i s  doping level, 

t h e  Fermi l e v e l  is  loca ted  a t  about + 0.1 kT i n t o  the valence. band. 

4.2.3 Thermal Conductivity Measurements 

Figure 4.4 presen t s  t he  results of thermal conductivity measurements on 

The published d a t a  po in t  of J u s t  e t  al. p-type ZnSb a t  O°C. is  included 

f o r  comparison. This i s  f o r  an unspecif ied o r i e n t a t i o n .  

There is  about a 12% anisotropy i n  the thermal conduc t iv i t i e s .  It seems 

reasonable t o  o rde r  t h e  thermal conduc t iv i t i e s  as: 

K33 ' K22 ' K1l 
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even though the  an i so t rop ie s  are close t o  t h e  es t imated  limits of probable 

experimental e r r o r .  

Evidently, almost the e n t i r e  amouns of t h e  observed thermal conduc t iv i t i e s  

are due t o  the la t t ice  (phonon) component. The approximately 10% upswing i n  

the  curves as the  electrical conductivity approaches 1000 (ohwcm) i s  probably 

due t o  inc reas ing  h e a t  conduction by holes.  Due t o  t h e  l a r g e  la t t ice  component, 

i t  is not  poss ib l e  t o  estimate the Lorentz n u d e r s  from t h i s  data.  As i s  shown 

i n  Appendix 2 (Eq. A. 2.86), these are given by: 

-1 

and are i s o t r o p i c  under the same conditions t h a t  w e r e  ou t l i ned  f o r  i so t ropy  i n  

t h e  thermoelec t r ic  power (Section 4.2.2). 

The upswing i n  the curves as they approach t h e  d a t a  po in t s  f o r  t he  undoped 

-1 , may be due t o  t h e  onset of ambipolar h e a t  c r y s t a l ,  C-1081-C, u ~ 2  (ohwcm) 

t ranspor t (13) .  

l i m i t s  of experimental e r r o r  t o  make any f u r t h e r  d i scuss ion  very specu la t ive ,  

4,3 .4  Thermoelectric Figure of Merit f o r  p-TYpe ZnSb 

However, t h e  observed changes are c lose  enough t o  the  probable 

Also shown on Figure 4.3 are the  d a t a  of J u s t i  e t  a1.") f o r  s i n g l e  

c r y s t a l s  and po lyc rys t a l s  of ZnSb. 

a t  room temperature. 

specimens. 

Their measurements were probably made 

No or i en ta t ions  were repor ted  f o r  the s i n g l e  c r y s t a l  

Notice t h a t  the c-axis gives the h ighes t  f i g u r e  of merit f o r  thermo- 

electric appl ica t ions :  

2 
( " K P  (4 .5 )  

(xu  
K 

2 3 -  

This is due t o  the l a r g e  anisotropy i n  the  electrical  conductivity.  This is 
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seen  t o  be u33 = 1.5 all 32.g~~~. 

The c-axis da ta  of Figure 4.3 has the  following a n a l y t i c a l  representa t ion :  

a = 795 - 210 logloo I.IV/'K ( 4 . 6 )  

-1 2 where u has the  un i t s  of  (ohrpcm) . The maximum of a (3 can be  found by ' 

d i f f e r e n t i a t i o n .  The r e s u l t  is: 

watts 

O°C maximum cm- ( O K )  

a t  u - 741 
( Q- cm) -1 

2 - 2.74 2 a a  

The thermal conduct ivi ty  da t a  of Figure 4.4 ind ica t e s  t h a t  

watts = 0.037 - K33 cm- O K  

at  u = 740 (ohm-cm)". Thus: 33 

f o r  p-type ZnSb a t  O°C. 

Our ana lys i s  of the da t a  presented by J u s t i  e t  al.") y i e l d s  a 

. 

- 1.18 x (OK)-' 'maximum (Justi Ref. 9) 

Evidently,  t h i s  i s  a room temperature r e s u l t .  The only thermal conduct ivi ty  

value quoted by Jus ti e t  a l .  was 0.029 wa t t / cm- 'K  which apparent ly  corresponded 

t o  an electrical  conductivity of 400 (ohmcm)". 

O°C r e s u l t  measured f o r  the  c-axis i n  t h i s  work. This d i f f e rence  i n  thermal 

This is  about 20% below the  

conduc t iv i t i e s  accounts f o r  most of the  d i f f e rence  i n  these  two maximum thermo- 

electric f i g u r e  of merits. 

of z = 1.0 x 

J u s t i  e t  a1.") quote  a maximum f i g u r e  of merit 

( 0 ~ ) ' ~  f o r  po lyc rys t a l l i ne  material. 

2 In conclusion, i t  i s  seen t h a t  even though the  a u product  i s  appreciably 

h ighe r  i n  s i n g l e  c r y s t a l s  of ZnSb, the f a c t o r  of ~2 i nc rease  i n  thermal 
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conduct ivi ty  r e s u l t s  i n  a f i g u r e  of merit which i s  about t h a t  of po lyc rys t a l l i ne  

material. 

In  t h i s  context,  i t  is seen t h a t  t he  thermoelec t r ic  f igu re  of merit  of 

ZnSb s i n g l e  c r y s t a l s  might be  g rea t ly  improved i f  t h e i r  thermal conduct ivi ty  

-can  be reduced without a f f e c t i n g  the electrical proper t ies .  

by a l loy ing  a t h i r d  atom i n t o  the  ZnSb c r y s t a l  l a t t i c e  t o  decrease phonon mean 

This might be done 

f r e e  paths  by mass f luc tua t ion  s c a t t e r i n g  (12) . 
4.4 HALL EFFECT AND ELECTRICAL RESISTIVITY MEASUREMENTS AS A FUNCTION OF 

TEMPERATURE 

4.4,1 In t roduct ion  

These measurements were made with the galvanomagnetic samples mounted i n  

sample holders  i n  exac t ly  the  manner shown i n  Figure 3.3. 

was screwed on the  sample ho lde r  t o  complete the  thermal and e l e c t r i c a l  s h i e l d i n g  

An aluminum cover 

of t h e  mounted sample. 

ho lde r  d r i f t e d  up from the  temperature of l i q u i d  ni t rogen,  77.3'K, t o  room 

The e l e c t r i c a l  measurements were made as the  sample 

temperature. A small hea te r ,  mounted on the  s h i e l d  cover, was used t o  reach 

temperatures s l i g h t l y  above room temperature - viz .  up t o  325'K. This has 

been explained i n  Sect ion 3.1.3.3. 

4.4.2 Measurements on Undoped ZnSb 

Figure 4.5 shows the  majority of  the  r e s u l t s  which were obtained with the  

undoped, p-type c r y s t a l ,  C-1081-C. The majori ty  of the  samples were no t  

measured f a r  i n t o  t h e i r  i n t r i n s i c  regions.  This was because of the  annealing 

phenomena which has been discussed i n  Sect ion 4.1. It was des i red  t o  preserve 

t h e  near ly  cons tan t  (with t i m e )  hole d e n s i t i e s  i n  these  samples so t h a t  

reproducible  magnetoresistance measurements could be made. The probable 

mechanism f o r  the  anneal ing phenomena was not  recognized u n t i l  a f t e r  the  
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galvanomagnetic measurement program w a s  focussed on the  copper doped samples. 

In  addi t ion  t o  R132 (sample GV-15-1 on Figure 4.5), R231 was measured i n  

the  i n t r i n s i c  range on a sample from an earlier undoped c rys t a l .  Neither 

o r  R231 w a s  found t o  undergo inversion i n  the  i n t r i n s i c  range. This R132 

implies t h a t  holes have higher m o b i l i t i e s  than e l ec t rons  - a t  least i n  the  "3" 

d i rec t ion(14) .  Komiya, Masumto and Fan (14) have presented a p l o t  of R213 i n  

the  i n t r i n s i c  region. No inversion w a s  observed. The da ta  of Kot and Kretsu (1) 

on th ree  d i f f e r e n t  H a l l  coef f ic ien ts ,  r e f e r r ed  t o  a coordinate system defined 

by the  planes of easy c r y s t a l  cleavage, a l s o  shows no inversion i n  the  i n t r i n s i c  

range. Thus, i t  i s  probable t h a t  the  hole  mobi l i t i es  are g rea t e r  than the 

e l e c t r o n  mob i l i t i e s  i n  the "1" and "2" directions,  also.  

The slopes of the  Hall coef f ic ien t  curves (Figure 4.5) i nd ica t e s  t h a t  the  

acceptor level which is  responsible f o r  the  p-type conduction has an ac t iva t ion  

energy, E of about 4.6 x e lec t ron  vo l t .  Koadya, Masumoto and Fan 

a l s o  have presented a curve which has a s lope  which corresponds t o  4.6 x 10 

(14) 
A' 

-3 

e l e c t r o n  vo l t s .  

t he  concentration of compensated donor centers  which are present(15). 

s lopes  i n  the  neighborhood of 2.3 t o  2.6 x 

EA/2, while sample GV-6-2 - being more heavily compensated than the  rest - has 

a s lope  which corresponds t o  EA. 

Measurements of t h i s  s o r t  can y i e l d  EA o r  EA/2 depending on 

The 

ev. apparently correspond t o  

Figure 4.6 presents H a l l  mobility curves which have been ca lcu la ted  from 

' Pa ' '.be Figure 4.7 presents  t h e  same the  da ta  of Figure 4.5. Clearly, u 

information, but a l s o  includes two add i t iona l  curves f o r  the b and c axes. 

The slopes of the  H a l l  mobility curves of Komiya, Masumoto and Fan(4) are 

C 

a l s o  indicated.  There i s  about a t  10% v a r i a t i o n  i n  the slopes of the  draf ted  

s t r a i g h t  l i n e s  between samples with the same cur ren t  ax is  (including the samples 
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of r e f .  4). The small t a b l e  included on Figure 4.7 i nd ica t e s  t h a t  t h i s  v a r i a t i o n  

can be cor re la ted  with the  apparent dens i ty  of acceptors.  

cen t r a t ions ,  a b i t  more ion ized  impurity - charge carrier s c a t t e r i n g  i s  present ,  

e s p e c i a l l y  nea r  77.3'K. 

region. 

A t  h igher  ho le  con- 

This decreases the  observed mobil i ty  i n  the  l o w  temperature 

The experimental temperature range (77 t o  300'K) has a l imi t ed  geometrical  

length on the  abscissa  of the  mobil i ty  p lo t .  The d a t a  poin ts  can, t he re fo re ,  be 

f i t  f a i r l y  w e l l  with s t r a i g h t  l i n e s  - bu t  these  s t r a i g h t  l i n e s  have decreased 

s lopes.  

The r e s u l t s  presented on Figures 4.6 and 4.7 i n d i c a t e  t h a t  la t t ice  s c a t t e r i n g  

is  the  dominant charge carrier s c a t t e r i n g  mechanism i n  undoped ZnSb 

The dates  of measurement are included on Figure 4.7. They seem t o  i n d i c a t e  

t h a t ,  wi th  the  exception of sample GV-13-1, the  hole  concentrat ion i n  c r y s t a l  

C-1081-C (removed from the  c r y s t a l  growth furnace on 7-10-64) was slowly decreas- 

i n g  with time. The c r y s t a l  may have been recovering a f t e r  growth (Tadient I 

425'C) i n  the  manner discussed i n  Sect ion 4.2. 

4. ( t o  3 Measurements on Copper Doped ZnSb 

Figures 4.8 and 4.9 present  results f o r  c r y s t a l  C-10784, which had a hole  

concentrat ion of about 4 x cme3. The Hall curves show a s l i g h t  s lope  - 
- a 3  corresponding t o  an apparent a c t i v a t i o n  energy of  0.9 x 10 ev. This probably 

does no t  represent  a s i n g l e  energy l e v e l  a c t i v a t i o n  process.  The doping l e v e l  

i s  high enough so t h a t  the  d i s c r e t e  acceptor  energy l e v e l  may have dispersed 

i n t o  a band of leve ls  of d i f f e r e n t  energies(16) .  

c r y s t a l  C-1075-B (p = 1.1 x 

This i s  e spec ia l ly  t r u e  f o r  

~ m - ~ ) ,  which is  shown by Figure 4.10. For t h i s  

c r y s t a l ,  the  Hall coe f f i c i en t  appears t o  be independent of temperature i n  the  

range of 77.3 t o  325'K. 

The Hall mobility curves,  Figure 4.9 and 4.11, i n d i c a t e  t h a t  ion ized  impurity 



- 89- 

. 

30 - 
- 

20 - 

- 

I I I I I 1 I I I I 
2 3 4  5 6 7  8 9 10 11 12 1 10 

RECIPROCAL TEMPERATURE ( K ) - I  

CRYSTAL C-1078-C p N 4 x 
SAMPLES : 

- R213 
A - G V  1-1 022 - R123 
0 -  GV 5-2 u33 - R132 

x - G V  16-1 

0.0 

7.5 

5.0 

2.5 

0 
A 

5 
5 

-Y 
- 

rc) 

E 
0 

I 

I- 
Z w u 
U 
U 

8 
V 
J z 
I 
ei 

Fig. 4.8 Hall Coefficient and Electrical Conductivity 
vs I/T Copper Doped p-Type ZnSb 



-90- 

2oool I500 

- 
800 - 

- 
600 - 
500 - 
400 - 

- 
300 - 

- 
200 - 

- 
- 
- 

CRYSTAL C-1078-C 

a =  CRYSTAL AXIS 
DIRECTION b =  

C =  

’. 
a 

‘a 
’.\ a 

‘a 
‘a 

1 ’*., 
2 
3 SAMPLE: \a 

c A X I S  

A X I S  

a b A X l S  

I O 0  I I I I I l l 1  I I I 1  I I I  

20 40 60 80 100 150 200 300 400 

TEMPERATURE - O K  

Fig. 449 Hall Mobilities as a function of Temperature 
p-type ZnSb-Copper Doped 



-91- 

m 

2 
0 
I 
U 
7 

200 

150 

100 
90 
80 

70 

60 

50 

m 

2 
2 
U 

2000 - 

1750 - 
1500 - 

1250- 

1000- 
900- 
800- 

700- 

600- 

I r-P-7- I I I I I I 1 V.0 

10 .7  

C - 1 0 7 5 - 8 -  w-e-e-e- 0 0-0 e 

0 
V 
\ 

0.4 * 
E 
V 

NOTE SCALE 
CHANGE 

J 
/ e 

5001 I I I I I I I 
2 3  4 5 6 7 8  9 

RECIPROCAL TEMPERATURE (0 K)-'  

CRYSTAL C- 1075-B p 2 1.1 x 1019 cm-3 

17 cm-3 
SAMPLE GV 2-1 c33 - R132 

D33 - R132 SAMPLE GV 2-1 
CRYSTAL C-1073-8 p N 5.2 x 10 

Fig. 4.10 Hall Coefficient and Electrical Conductivity 
w I/T Copper Doped p-Type ZnSb 



-92- 

5000 

4000 

3000 

v) 
I 

0 > 
\ 
E 

cv 
V 

t 

2000 

1500 

1000 

800 
700 
600 

500 * . -  - 
400 I I I I l l 1 1  I I I I I l l 1  I 

TEMPERATURE ( K ) 

.\ 
0 

- - 
20 30 40 50 60 80 100 150 200 300 400 

ALL CURVES: P H  = 033 R132 

CURVE: @ CRYSTAL C-1081-C SAMPLE GV-15-1 p 2 x 10l6 
II C-1078-C II GV-5-2 3.3 

5.2 x 10 17 
1.1 x 10 19 

GV-2-1 C-1073-8 
C-1075-8 I I  GV-2-1 

II II 
0 
0 
@ I1  

Fig. 4.1 1 Comparison of Temperature Variations 
of Hall Mobilities at Several Doping Levels 



-9 3- 

s c a t t e r i n g  is  important a t  low temperatures. 

C-1078-C, is  seen t o  have just about the  same room temperature H a l l  mobil i ty  

as t he  undoped c r y s t a l ,  C-1081-C (Figure 4.11). It i s  a l s o  i n t e r e s t i n g  t o  

no te  t h a t  the  anisotropy i n  the  Hall mob i l i t i e s  of crystal C-1078-C (Figure 

4 . 9 )  is  just about independent of temperature. 

The most l i g h t l y  doped c r y s t a l ,  

4.5 ANISOTROPY OF THE HALL COEFFICIENT 

4 . 5 . 1  Introduct ion 

There are th ree  poss ib l e  independent H a l l  c o e f f i c i e n t s  i n  a c r y s t a l  which 

has  orthorhombic symmetry. These are: 

The ind ica t ed  e q u a l i t i e s  a r e  those which a re  required by Onsager symmetry. Any 

experimentally observed anisotropy between these H a l l  c o e f f i c i e n t s  must be 

accounted f o r  i n  terms of  the  band s t r u c t u r e  and charge carrier s c a t t e r i n g  

models which are assumed f o r  p-type ZnSb. Consequently, i t  i s  important t o  

experimental ly  determine these H a l l  coe f f i c i en t s .  

4.5.2 Measurements on Undoped P-Type ZnSb 

The measurements of Kot and Kretsu'') on undoped ZnSb (p I, 5 x 10l6 

i n d i c a t e  t h a t  as much as a 50X anisotropy might be p re sen t  i n  the  H a l l  co- 

e f f i c i e n t s  ( r e f e r  t o  t h e i r  Figure 2). 

i n  Figure 4.5 - show a similar va r i a t ion  i n  the  measured Hall coe f f i c i en t s .  

The observat ions of t h i s  work - presented 

How- 

ever, the  ind ica t ed  50% di f fe rence  between R132 and R321 is as l a r g e  as the 50% 

d i f f e rence  i n  two d i f f e r e n t  determinations of R132 (samples GV-6-2 and 15-1). 

This i l l u s t r a t e s  the  d i f f i c u l t y  involved i n  drawing conclusions about the  
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an iso t ropies  i n  any of the  galvanomagnetic c o e f f i c i e n t s  from measurements on 

undoped c r y s t a l s .  Unless the  tneasurement samples have exac t ly  the  same thermal 

h i s t o r i e s ,  the  carrier p r e c i p i t a t i o n  phenomenum, which w a s  discussed i n  Sect ion 

4.2, can lead  t o  s i g n i f i c a n t  va r i a t ions  i n  hole  concentrat ion between sample 

ba r s  cut  from the same, homogeneous por t ion  of an undoped c rys t a l .  For t h i s  

reason, da t a  taken on undoped p-type c r y s t a l s  i s  d i f f i c u l t  t o  i n t e r p r e t .  I n  f a c t ,  

the  Kot and Kretsu") paper i s  the  only publ ished account of the  probable 

an iso t ropies  i n  any t r anspor t  parameter t h a t  d i r e c t l y  depends on the  electrical 

carrier concentration. 

4.5.3 Measurements on Copper Doped Crystal C-1078-C 

H a l l  coe f f i c i en t s  were measured along with the  magnetoresistance e f f e c t  i n  

a number of galvanomagnetic samples cu t  from crystal C-1078-C. 

a hole  concentration (p = 1/Rq) of about 4 x 1017 cm-3 a t  room temperature. 

vis sample had 

Thus, 

the e x p l i c i t l y  introduced acceptor  doping level w a s  15 t o  20 times h igher  than 

the  r e s i d u a l  acceptor  concentrat ion l e v e l  i n  undoped crystals. 

c a r r i e r  p r e c i p i t a t i o n  e f f e c t s  (Section 4.2) could cause only a maximum of 5 t o  

As a r e s u l t ,  

7% change i n  the  net hole  concentrat ion.  

are presented i n  Table 4.2. 

The average r e s u l t s  which were obtained 

TABLE 4.2 

HALL COEFFICIENTS AT p 5 4 x cm-3 

Crys ta l  C-1078-C 

300 O K  

3 R123 (R231) - 14.1 5 1 c m  /coulomb (4 samples) 

R132 (R312) 16.3 1 (6 samples) 

( 1  sample) 
(cont.)  
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77.3OK 

3 (R231) = 15.7 5 1 cm /coulomb (4 samples) 

(R312) = 18.4 2 1.5 (6 samples) 

R123 

R132 

R231 (R321) 16.6 ( 1  sample) 

The approximate scatter i n  the  measurement r e s u l t s  i s  ind ica t ed  by the  given 

limits. Data f o r  R and R were averaged together .  The a.c. measurement 

system ind ica t e s  only the  magnitude of  a galvanomagnetic vol tage - no t  the  s ign.  
i j k  j i k  

The r e s u l t s  of Table 4.2 ind ica t e  t h a t  t he  Hall c o e f f i c i e n t  of p-type ZnSb 

Kawasaki and Tanaka (15) have obtained the  same r e s u l t  f o r  p-type i s  i so t rop ic .  

CdSb . 
4.5.4 Measurements on More Heavily Doped Crystals 

The following expe r imnt s  were e x p l i c i t l y  designed t o  more ca re fu l ly  

determine the  degree of anisotropy between the  H a l l  c o e f f i c i e n t s  of p-type ZnSb. 

Single  c r y s t a l  bars  were cu t  i n  the  form of rec tangular  para l le lep ipeds .  

These ba r s  had the  "2" and "3" c rys ta l lographic  d i r ec t ions  as electric cur ren t  

axes. H a l l  probes were mounted on each of the  two p a i r s  of longi tudina l  faces  

of a bar.  With the  cur ren t  ax is  mounted v e r t i c a l l y ,  the  sample could be r o t a t e d  

so t h a t  two independent Hall coe f f i c i en t s  could be measured a t  one time. In  

t h i s  way, R123 and R321 were measured on the  "2" ax i s  b a r  and R231 

on t h e  "3" ax is  bar .  231 

magnitude. Hence, a l l  t h ree  independent H a l l  c o e f f i c i e n t s  were measured and 

and R132 

i n  absolute  Onsager sywaetry r equ i r e s  t h a t  R321 and R 

a homogeneity check between the two sample ba r s  was obtained. The observed 

r e s u l t s  are presented i n  the tables  which follow. 
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TABLE 4.3 

1 7  cm-3 HALL COEFFICIENTS AT p ?r 5.5 x 10 

Crys t a l  C-1073-B 

300 O K  

3 = 11.9 c m  /coulomb 

- 10.5 
sample GV-1-1 R123 

R321 

= 11.6 

= 11.0 

R2 31 

R132 

77.3'K 

* 12.9 

= 11.4 

R123 

R321 

R2 31 

R132 

13.2 

* 13.3 

sample GV-2-1 

sample GV-1-1 

sample GV-2-1 

TABLE 4.4 

19 cm-3 HALL COEFFICIENTS AT p I, 1.1 x 10 

C r v s  t a1 C- 10 75-B 

300'K 

3 = 0.594 cm /coulomb 

- 0.576 
sample GV-1-1 R12 3 

R32 1 
= 0.550 

= 0.568 

R2 31 

R132 

sample GV-2-1 

77.3'K - 0.609 c m  3 /coulomb 

R123 sample GV-1-1 

R32 1 - 0.593 

= 0.560 - 0.570 

R231 

R1 32 

sample GV-2-1 
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Except f o r  the  approximately 10% low value f o r  R321 measured on c r y s t a l  

C-1073-B sample GV-1-1, the  r e l a t i v e  scatter i n  the  above r e s u l t s  i s  2 4%. 

It is  concluded t h a t  the  Hall e f f e c t  is i s o t r o p i c  i n  p-type ZnSb. It i s  

i n t e r e s t i n g  t o  note  t h a t  t h i s  isotropy p reva i l s  even though the re  is  appreciable  

ion ized  impurity - charge carrier s c a t t e r i n g  present  at the  lower temperature. 

This po in t  is used i n  the  discussion which appears i n  Chapter 5. 

4.6 MAGNETIC FIELD DEPENDENCES OF THE HALL AND MAGNETORESISTANCE COEFFICIENTS 

4.6.1 Introduct ion 

I n  order  t o  determine the  region of a p p l i c a b i l i t y  of the  low magnetic f i e l d  

s o l u t i o n  of the  Boltzmann equation (Appendix 2 ) ,  i t  is important t o  check the  

magnetic f i e l d  dependences of the  measured e f f e c t s .  

4.6.2 H a l l  Ef fec t  

The H a l l  e f f e c t  has been measured i n  undoped (p % 3 x 10l6 ~ m - ~ )  and copper 

doped (p % 4 x 1017 ~ m - ~ ,  p 5.5 x 1017 and p % 1.1 x lo1’ ~ m - ~ )  ZnSb at room 

temperature and a t  l i q u i d  n i t rogen  temperature f o r  magnetic f i e l d s  between 250 

gauss and 12.5 ki logauss .  The masured  H a l l  vo l tages  were l i n e a r  i n  B, showing 

only an apparently non-systematic 5 2 percent  maximum devia t ion  from a l i n e a r  

f i e l d  dependence. 

measurement. 

the  h ighes t  mob i l i t i e s  - would be expected t o  be the  f i r s t  t o  show high f i e l d  

departures  from a l i n e a r  behavior. 

4.6.3 Mametoresis tance 

These f luc tua t ions  are wi th in  the  experimental accuracy of the  

Typical r e s u l t s  are shown i n  Figure 4.12. Undoped c r y s t a l s  - having 

Magnetoresistance has been measured i n  the  undoped and the  l i g h t l y  copper 

doped samples r e fe r r ed  t o  above a t  l i q u i d  n i t rogen  temperature f o r  magnetic 

f i e l d  d e n s i t i e s  between 8 and 12.5 kg. The magnetoresistance follows a simple 

B 2 magnetic f i e l d  dependence within 2 5 percent .  This i s  wi th in  the experimental  
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accuracy of the measurement. No systematic deviations from a B2 dependence are 

observed i n  the  magnetic f i e l d  range of 8 t o  12.5 kg. 

f i e l d  dependence of the  magnetoresistance voltage of c r y s t a l  C-1081-C (undoped) 

sample GV-15-1. 

Figure 4.16 shows the 

It is  seen t o  be quadratic i n  B from 1.00 t o  12.55 kg. 

4.7 MAGNETORESISTANCE MEASUREMENTS ON P-TYPE ZnSb 

4.7.1 Introduction 

Magnetoresistance measurements are used as a method of exploring the symmetry 

of t he  valence band of ZnSb. 

The galvanomagnetic measurement instrumentation has been described i n  

Section 3.1.2. The 12 independent magnetoresistance coe f f i c i en t s  t o  be measured 

are : 

'1111 '2211 '3311 '1212 

'1122 '2222 '3322 '1313 

'1133 '2233 '3333 '2323 

Four measurements on each of three bars  are required t o  measure a l l  1 2  of these 

coe f f i c i en t s .  For ins tance ,  by su i tab ly  changing the  mounted pos i t i on  of the sample, 

can be  measured on one sample with t h e  e l e c t r i c  '1111' '1122' '1133 and '2221 

cur ren t  along the <loo> d i rec t ion .  

on the  <010> faces of the  sample 

P~~~~ i s  measured with " H a l l  e f f ec t "  probes 

as the magnetic f i e l d  i s  moved about i n  the  

(001) plane of the sample. 

The sample geometry which was used here has been described i n  Section 2.6.2 

(and Figure 2.9) and the method of making electrical contacts described i n  Section 

2.6.3. Figure 3.3 is  a photograph of c r y s t a l  C-1081-C, sample GV-15-1 mounted 

f o r  measurements. The longitudinal homogeneity of the  magnetoresistance samples 

was checked by measuring the Hall coe f f i c i en t  a t  two pos i t ions  along the sample 

ax is  (Figure 2.9). Occasionally, a three poin t  probe r e s i s t i v i t y  p r o f i l e  w a s  
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taken along the  sample axis. 

used had a x i a l  va r i a t ions  i n  hole  densi ty  of less than 3 t o  5%. 

These checks ind ica t ed  t h a t  t he  sample which were 

(17) No attempt was made t o  d i r e c t l y  measure the  p l ana r  Hall c o e f f i c i e n t s  , 
The magnitudes of these  c o e f f i c i e n t s  are i n f e r r e d  from '1212' '1313' and '2323' 

the  usual type of magnetoresistance measurements on samples cu t  so t h a t  t h e i r  

cur ren t  ax is  w a s  no t  along a p r inc ipa l  c rys t a l log raph ic  d i rec t ion .  These are 

c a l l e d  "off-axis" samples i n  the  following sec t ions .  This w a s  done becuase 

the  very small magnetoresistance of p-type ZnSb makes the  de tec t ion  of a magneto- 

r e s i s t a n c e  e f f e c t  a t  " H a l l  probes" j u s t  about impossible with the  measurement 

techniques used here. 

A t  12.5 kg, the  e l e c t r i c  f i e l d  component which gives rise t o  the  H a l l  vol tage 

i s  roughly two orders of magnitude l a r g e r  than the  change i n  the  longi tudina l  

component of t he  electric f i e l d  which i s  caused by the  magnetoresistance. As 

I a r e s u l t ,  the  s l i g h t e s t  departures  from i d e a l  galvanomagnetic sample geometry 

w i l l  introduce a spurious H a l l  vol tage component i n t o  the  vol tage measured a t  

the  magnetoresistance probes. In  p rac t i ce ,  t he  measured magnetoresistance 

vol tage contains  roughly an equal amount of spurious H a l l  vol tage a t  12.5 kg. 

By s u i t a b l y  averaging vol tages  measured f o r  both d i r ec t ions  of the  magnetic 

f i e l d ,  the  a c t u a l  magnetoresistance vol tage can be obtained. However, 

e spec ia l ly  below 10 kg, t h i s  procedure can amount t o  tak ing  the  d i f f e rence  of 

two l a rge  numbers and can possibly introduce considerable  e r r o r  i n t o  the  

magnetoresistance resul ts .  The absolute  accuracy of the  magnetoresistance 

measurement, AP/P'B , is est imated t o  be between 5 percent  and 10 percent ,  2 

depending upon the numerical magnitudes involved. 
-b -b 

The experimentally observed angular dependence (angle between B and J) 

of the  magnetoresistance is presented i n  the  17 sepa ra t e  f igu res  which follow. 
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On these f igu res ,  b racke ts  have been drawn t h a t  represent  the  t o t a l  scatter 

f o r  a l l  of the  d a t a  poin ts  t h a t  correspond t o  a given angle between the  magnetic 

f i e l d  and cur ren t  ax is  of the sample. 

given angle become too dense, hor'izontal hash marks l o c a t e  the  experimental  value 

of Ap/p'B 

magnetic f l u x  d e n s i t i e s  between 8 and 12,s ki logauss .  

Except when the  experimental  po in t s  a t  a 

2 f o r  each magnetic f i e l d  s t r e n g t h  used. Data w a s  usual ly  taken with 

Figure 4.16 presents  

the  observed magnetoresistance voltage of an undoped sample over the  magnetic 

f i e l d  range of 1 , O  t o  12,55 kg. 

The scatter of the  individual  d a t a  po in t s  wi th in  a given bracket  seens t o  

bea r  no c o r r e l a t i o n  t o  magnetic f i e l d  s t rength .  Hence, i t  must be concluded 

t h a t  the  observed magnetoresistance is quadra t i c  i n  magnetic f i e l d  s t rength .  

The scatter of the  ind iv idua l  da ta  po in t s  mainly arises from the f a c t  t h a t  the  

xiagnetoresistance e f f e c t  i s  so small i n  ZnSb. For ins tance ,  a t  77.3'K i n  a 

12,55 kg magnetic f i e l d ,  the  largest observed changes i n  r e s i s t ance  are 2.1 

percent  and 0,3 percent  f o r  the  undoped and copper doped samples, respec t ive ly .  

Extensive magnetoresfstance measurements were made at 77.3'K only,  A t  

room temperature,  the  r e s i s t ance  changes were of the  o rde r  of O o O 1 %  and less. 

These were too small t o  measure accurately with the  equipment which was used. 

4.7.2 Magnetoresistance Measurements on Undoped P-Type ZnSb 

Figures 4.13, 4.14 and 4.15 present  magnetoresistance r e s u l t s  f o r  the  

electric cur ren t  d i r ec t ed  along the <loo>, . c O l O >  and cool> c r y s t a l  axes, 

respec t ive ly .  These r e s u l t s  are included t o  give a q u a l i t a t i v e  p i c t u r e  of 

t he  angular symmetry of the  magnetoresfstance measurements i n  p-type ZnSb, 

p ~ 2 x l O  c m .  16 - 3  

The da ta  which is presented ind ica t e s  a longi tudina l  magnetoresistance 

e f f e c t  which is so small t h a t  i t  is reasonable t o  regard i t  as being res idua l .  
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The observed longi tudina l  e f f e c t s  probably arise from l o c a l  departures  from sample 

uniformity. These nonuniformities a r e  p r i n c i p a l l y  l o c a l  c r y s t a l l i n e  imperfections 

and the  f i n i t e  s i z e  of t he  vol tage contac ts  on the  samples. S i m i l a r  amounts of 

r e s i d u a l  longi tudina l  magnetoresistance appear i n  published da ta  f o r  n-type 

(18) GaAs and n-type S i  . 
The magnitudes of the  i l l u s t r a t e d  t ransverse  magnetoresistance e f f e c t s  are 

not  t o  be regarded as being quan t i t a t ive ly  accurate .  The observed t ransverse  

e f f e c t s  would vary by as much as 50% between samples i n  the  few rep roduc ib i l i t y  

checks t h a t  were made oq these undoped samples. 

Because of the  apparent c a r r i e r  p r e c i p i t a t i o n  e f f e c t s  which have been 

discussed i n  Sect ion 4.2, t he  c a r r i e r  concentrat ion i n  c r y s t a l  C-1081-C w a s  slowly 

changing with t i m e .  This made the d e t e d n a t i o n  of the  anisotropy i n  the  

e l e c t r i c a l  r e s i s t i v i t y  and H a l l  e f f e c t  impossible - s ince  they depend d i r e c t l y  

on the  hole  concentrat ion,  p. Ap/po does no t  depend d i r e c t l y  on p. However, 

changing carrier concentrat ions do a f f e c t  Ap/po through the value of the  

r e l a x a t i o n  time, T, which i s  s e n s i t i v e  t o  the  amount of ionized impurity 

s c a t t e r i n g  which i s  present(20) .  For these  reasons,  the  major p a r t  of the  

measurement e f f o r t  was concentrated on a copper doped c r y s t a l .  

4.7.3 Magnetoresistance Measurements on Copper Doped P-Type ZnSb 

4.7.3.1 E l e c t r i c a l  cur ren t  d i rec ted  along p r i n c i p a l  c rys t a l log raph ic  axes 

Figure 4.17 through 4.28 present  the observed data.  This d a t a  ind ica t e s  

t h a t  the  measurement results a r e  reproducible  t o  wi th in  10% from sample t o  

sample. These measurements were made on samples c u t  from c r y s t a l  C-1078-C 

which w a s  copper doped - p ?, 4 x 1017 cm3. 

This d a t a  has the  same q u a l i t a t i v e  f ea tu res  as the  r e s u l t s  which have 

been presented f o r  the  undoped c r y s t a l  i n  the  Preceding sec t ion .  In  p a r t i c u l a r ,  
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t he  longi tudina l  e f f e c t s ,  pll l l  11 /p are very c lose  t o  zero and lp and p3333 33 
2 the  corresponding angular  v a r i a t i o n  curves follow a good cos 8 dependence. 

As with the  undoped c r y s t a l ,  p2222/p22 i s  about 20% of the  corresponding trans- 

verse e f f e c t .  However i t  is  s t i l l  of the  same absolute  value as p l l l l / p l l  and 

- it  only looks l a r g e r  on a r e l a t i v e  s c a l e  compared t o  the  small 33 33/p 33 

Evidently,  these r e s idua l  e f f e c t s  are character-  2233lp22' t ransverse  e f f e c t ,  p 

i s t i c  of the  degree of crystal uniformity and per fec t ion .  They are a l s o  

c h a r a c t e r i s t i c  of the  degree t o  which the  i d e a l l y  vanishingly small areas  of 

the  vol tage probe contacts  have been approached i n  t h i s  work. 

In  an attempt t o  see i f  the  sandblasted sample sur faces  were responsible  

sample GV-13-1 had 15p of i t s  su r face  2222lP22' f o r  the  r e s idua l  value of p 

removed i n  an aqua regia etch.  As Figure 4.22 shows, t h i s  had no appreciable  

e f f e c t  on the  observed r e s u l t s .  The H a l l  mobil i ty  vs. temperature curve f o r  

t h i s  e tched sample a l s o  coincided with t h a t  of sample GV-1-1 (sandblasted 

su r faces )  which has been shown i n  Figure 4.9. 

I f  the  valence band of ZnSb i s  charac te r ized  as a s i n g l e  e l l i p s o i d ,  then 

the f a c t  t h a t  p l l l l / p l l  and p3333/p33 

axes of t h i s  e l l i p s o i d  l i e  along the  <loo> and <001> c r y s t a l  axes. Thus, the  

t h i r d  axes of t he  e l l i p s o i d  must l i e  along the  <010> c r y s t a l  ax i s .  Hence, i t  

is concluded t h a t  the approximately zero longi tudina l  magnetoresistance f o r  

e l e c t r i c  cur ren ts  d i rec ted  along each of t he  p r i n c i p a l  c r y s t a l  axes ind ica t e s  

t h a t  t he  energy surfaces  of p-type ZnSb might be charac te r ized  by one o r  more 

general  e l l i p s o i d s  which are o r i en ted  with t h e i r  p r i n c i p a l  axes p a r a l l e l  t o  the  

edges of t he  orthorhombic Br i l l ou in  zone. 

0 r equ i r e s  t h a t  two of the p r i n c i p a l  

The r e s u l t s  of the  magnetoresistance measurements are summarized i n  Table 4.5 

Theglven valuesare a r i t hme t r i c  averages of 6 o r  more experimental  values .  These 
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'1122 - = 143 
'11 

TABLE 4.5 

MEASURED GALVANOMAGNETIC COEFFICIENTS FOR COPPER DOPED P-TYPE ZnSb 

- '2222 I, 

'22 ( 1 4 ~ 1 0 - ~ )  

Crys t a l  C-1078-C 77.3'K 

p % 4 x 

= 1.40 (+ 0.10) x (ohxwcm) 

= 2.20 (+ 0.15) x 

= 0.95 (+ 0.07) x lo-* 

'11 

'22 

' 33 
3 = 16.9 + 1.3 c m  /coulomb '123 '312 '231 

I n  u n i t s  of (kilogauss)-2 and wi th  a probable  e r r o r  of 10%. - 

I 1 
'2211 - = 90 

'22 

'1111 

'11 
- % O  

( 5 . 8  

'3311 - = 95 
'33 

'1133 - = 53 
'11 

'2233 - = 50 1 '22 

'3333 ?r () 

'33 (6.8 x 

. 

2 = - 24 (26) x lo-' (ohm-cm)/(kilogauss) 
r e f e r  t o  Sect ion 4.7.3.2 '1313 - - 85 (29) '1212 

= -65 (515) x LO-' This value w a s  no t  measured. 
from o the r  data.  This w a s  done i n  Appendix 3. 

It was i n f e r r e d  
'2323 
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values were obtained on two o r  more samples ( the  one exception being p /p ) 2211 22 

and a t  s eve ra l  magnetic f i e l d  l eve l s  i n  the  range of 8 t o  12.5 kg. The average 

values of the H a l l  c o e f f i c i e n t  (considered t o  be i s o t r o p i c  - r e f e r  t o  Sect ion 

4.5) and the  averages of the  measured values of the  e l e c t r i c a l  resistivities 

are a l s o  included. The limits of e r r o r  have been included f o r  the  l a t t e r  

q u a n t i t i e s .  

These experimentally determined, a r i t hme t i c  averages f o r  the  magneto- 
2 r e s i s t a n c e  coe f f i c i en t s  were used t o  cons t ruc t  the  curves of the  form cos 0 ,  

s i n  0 and cos 0 + s i n  0 which appear on Figures 4.17 through 4.28. 2 2 2 

It i s  of p a r t i c u l a r  s ign i f i cance  t o  note  the  apparent numerical symmetries 

i n  the  resul ts  shown i n  Table 4.5. Within the  est imated probable e r r o r  i n  the  

experimentally determined values : 

The s ign i f i cance  of these r e s u l t s  are discussed i n  Chapter 5. 

4.7.3.2 Measurements on off-axis  samples 

Galvanomagnetic sample bars  were cu t  with long i tud ina l  axes ( cu r ren t  axes) 

which d id  not  coincide with a p r i n c i p a l  ax is  d i r e c t i o n  of the  c r y s t a l .  These 

bars  were cut  from c r y s t a l  C-1078-C - on which most of the  magnetoresistance 

measurements were made. The bars  are i d e n t i f i e d  by the  sample numbers GV-24-1, 

GV-25-1 and GV-26-1. Figures 4.29 and 4.30 present  the  observed data .  These 

f igu res  include sketches of the  o r i e n t a t i o n  of t he  ind iv idua l  bars  with respec t  

t o  the  p r i n c i p a l  axis  system of the  c r y s t a l .  

(001) plane wafer a t  45" t o  the <loo> and <010> d i r e c t i o n s .  

was c u t  from an (010) wafer a t  45" t o  the <loo> and cool> d i r ec t ions .  

Sample GV-26-1 was cu t  from an 

Sample GV-24-1 

F ina l ly ,  
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sample GV-25-1 was cu t  from t h i s  same (010) wafer, but a t  90" t o  the  o r i en ta t ion  

of GV-24-1. The magnetoresistance of t he  a x i a l  ( p a r a l l e l  t o  the  cur ren t )  component 

of the  i n t e r n a l  e l e c t r i c  f i e l d  was measured. Thus, t he  arrangement of t he  magneto- 

r e s i s t ance  probes was the same as t h a t  of the  previous galvanomagnetic samples 

(Section 4.7.3.1) and is shown i n  Figure 2.9. 

Using the  r e s u l t s  of Appendix 3, i t  can be shown t h a t ,  with the  electric 

cu r ren t  a t  45' t o  the  <loo> and cool> d i r ec t ions  and i n  the  (010) plane,  the  

measured magnetoresistance i s  given 

1 
+ 2 ('1133 -t 

by : 

(4.8) 

-k 
The plane of r o t a t i o n  of the  magnetic f i e l d  vec tor  B, and the angular reference 

f o r  8 are given on Figure 4.30. 

f o r  samples GV-24-1 and GV-25-1. 

the measurement r e s u l t s  f o r  sample GV-26-1. A t  8 = 0" ( t ransverse  magneto- 

r e s i s t ance )  Eq. 4.8 becomes: 

This equation describes t h e  measurement r e s u l t s  

A similar equation can be w r i t t e n  t o  describe 

have a l l  been determined by the  previous measurements. 3322 and p 
p i 1 9  pi39 Q122 

The experimental values a re  presented i n  Table 4.5. I n s e r t i n g  these i n  Eq. 4.8 
I 

I -  

y i e l  ds : 

% ( e  = 0') = 150 x (kilogauss)-2 
P'B 

which i s  i n  exce l len t  agreement with the average measured value of about 

153 x lo-' which i s  indica ted  on Figure 4.30. 
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A t  8 - 90' ( b n g i t u d i n a l  magnetoresistance): 

A = -  1 1 

poB2 2 ( P ; ~ + P ; ~  ) ('1133 + '3311 + 431313) 
(4.10) 

from Table 4.5 as w e l l  as the  3311 I n s e r t i n g  values f o r  p o  and p 11' ';3) '1133 

average measured value f o r  Ap/p0B' (at  t h i s  angle) from Figure 4.30 y i e l d s  

an equation which can be solved f o r  p The value so determined is: 1313' 

(ohrPcm) 

(ki logauss)  2 = - 24 '1313 

Following the same procedure with the  d a t a  of Figure 4.29 f o r  sample GV-26-1 

y i e lds :  

(ohm- cm) 

(k i  l o  gaus s ) 
2 = - 85 p1212 

was not  determined '2323 These values have been included i n  Table 4.5. 

experimentally.  Its value can be i n f e r r e d  from the  above two r e s u l t s  once a 

model f o r  the  valence band of ZnSb has been formulated. This has been done i n  

Appendix 3 by using the  model developed i n  Chapter 5. 

were determined by sub t r ac t ing  two experimentally measured magnetoresistance 

Since the  above values  

vol tage r a t i o s ,  a probable e r r o r  as high as 25% should be assigned t o  them. 

The observed off-axis  longi tudina l  magnetoresistance i s  almost as small 

as the  on-axis longi tudinal  magnetoresistances which are considered t o  be 

r e s idua l  (Section 4.7.3.1). Thus, i t  is uncer ta in  as t o  how much of the  

magnitude of t he  observed off-axis longi tudina l  magnetoresistance is  a c t u a l l y  

r e a l .  This po in t  is d e a l t  with i n  Sect ion 5.6.2. 

The developments i n  Appendix 3 i n d i c a t e  t h a t  i t  is  reasonable t o  expect 

the  of f-axis longi tudina l  magnexoresis tance t o  be zero.  
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CHAPTER 5 

MODEL FOR THE ELECTRONIC TRANSPORT PROCESSES I N  P-TYPE ZnSb 

5.1 INTRODUCTION 

This chapter presents  a model f o r  the  e l e c t r o n i c  t r anspor t  p rope r t i e s  of 

p-type ZnSb. This model explains  the  following observed p rope r t i e s  of p-type 

ZnSb : 

1. I so t rop ic  thermoelectr ic  power (Section 4 . 3 . 2 )  

2 .  I so t rop ic  H a l l  coe f f i c i en t s  (Section 4 . 5 )  

3. The q u a l i t a t i v e  symmetry of the  magnetoresistance measurements, namely 

t h a t  the  longi tudina l  e f f e c t s  vanish. 

4.30) 

4. The numerical symmetry observed i n  experimentally measured magneto- 

res i s tance  r a t i o s .  

(Section 4.7 and Figures 4.13- 

(Section 4.7.3.1, Table 4.5 and Equation 4 . 7 ) .  

5 .2  QUALITATIVE IMPLICATIONS OF THE MAGNETORESISTANCE MEASUREMENTS 

The longi tudina l  magnetoresistance vanishes wi th in  reasonable experimental  

e r r o r  when the  e l e c t r i c  cur ren t  is  d i r ec t ed  along the  p r i n c i p a l  axes of the  

c rys t a l .  This implies t h a t  the  valence band can be charac te r ized  by one o r  

mre general  e l l i p s o i d s  which are o r i en ted  with t h e i r  p r i n c i p a l  axes along the  

<loo> <010> and <001> d i r ec t ions  of the  c r y s t a l .  

The cyclotron resonance work of  Stevenson") d id  not  d i sc lose  the  sign 

of the  charge carrier which was responsible  f o r  the  s i n g l e  observed resonance 

l i n e  ( r e f e r  t o  Table 1.1). He w a s  ab le  t o  f i t  h i s  da t a  t o  a s i n g l e  zone 

centered e l l i p s o i d  of revolut ion (about the  a ax i s ) .  This geometry i s  a 

special case of the model which i s  developed here.  

the s ign  of the  charge carrier and s ince  only one resonance peak das observed, 

no f u r t h e r  use w i l l  be made of t h i s  work. 

Since i t  d id  no t  d i sc lose  
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The observed symmetry i n  the magnetoresistance measurements can be 

accounted f o r  i n  terms of a valence band which has a sur face  of constant 

energy i n  the  shape of a s i n g l e  general e l l i p s o i d .  This s ing le ,  general  

e l l i p s o i d a l  band i s  assumed to  be centered a t  the  po in t  I' (i.e.,  k = (O,O,O)),  

Figure 5.l(b). 

Khartsiev(6) has shown tha t  the gradient of E$) is  zero - i n  a l l  d i r ec t ions  - 
at the  symmetry poin ts  I' and R. 

From h i s  group theo re t i ca l  study of the ZnSb crystal s t r u c t u r e ,  

These have been shown i n  Figure 5.l(b).  

The t ranspor t  measurements which were made i n  t h i s  work o f f e r  no 

p o s s i b i l i t y  of unambiguously e s t ab l i sh ing  whether a s i n g l e  o r  many va l l ey  

valence band i s  present.  The f ac t  t h a t  the off-axis longi tudina l  magneto- 

r e s i s t ance  is  approximately zero (Figures 4.29 and 4.30, Section 5.6.2 and 

Appendix 3) i nd ica t e s  t h a t  a many va l l ey  band s t r u c t u r e  would have t o  contain 

e l l i p s o i d s  which had the  same r e l a t i v e  s p a t i a l  o r i en ta t ion .  This r u l e s  ou t  

a many va l l ey  s t r u c t u r e  such as t h a t  of n-type s i l i c o n .  

valence band s t r u c t u r e  w i l l  be developed f o r  a model i n  t h i s  work. 

F ina l ly ,  i t  should be noted t h a t  t he  lack of a magnetic f i e l d  dependence 

A s i n g l e  va l l ey  

i n  the measured H a l l  coef f ic ien ts  and magnetoresistance q u a n t i t i e s ,  

Ap/poB , ( r e f e r  t o  Section 4.6) ind ica ted  t h a t  a " l i g h t  hole" band (e.& 

p-type germanium) i s  not  present. Also, i n  comparison with da t a  on p-type 

germanium and s i l i c o n ,  these r e su l t s  on ZnSb i n f e r  t h a t  se r ious  warping of 

the  valence band i s  not  present. 

2 

5.3 THEORETICAL DEVELOPMENT 

The t r anspor t  coe f f i c i en t s  f o r  a general e l l i p s o i d  have been derived 

from a so lu t ion  of t he  Boltzmann equation. I n  Appendix 2 ,  r e s u l t s  are 

presented f o r  the: 
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1. Thermoelectric power 

2. Elec t ronic  cont r ibu t ion  t o  the  thermal conduct ivi ty  

3. E l e c t r i c a l  r e s i s t i v i t y  

4. H a l l  c o e f f i c i e n t s  

So Magnetoresistance coe f f i c i en t s .  

These a n a l y t i c a l  r e s u l t s  and a Summary of the  approximations which were used i n  

so lv ing  the  Boltzmann equat ion are  summarized i n  Sect ions A.2.1 and A.2.7. 

p a r t i c u l a r ,  the  r e l axa t ion  time was assumed t o  be a diagonal tensor  when 

r e f e r r e d  to the  coordinate  system i n  Qhich t h e  e f f e c t i v e  mass is diagonal.  The 

elements of the  r e l axa t ion  time are assumed t o  be funct ions of energy only. Each 

element can possibly be a d i f f e r e n t  funct ion of energy. This assumed form of 

I n  

the  r e l axa t ion  t i m e  is i n  accordance with the work of  Herring and Vogt (2) , 

who have shown t h a t  s c a t t e r i n g  processes which e i t h e r  conserve energy or  

randomize p a r t i c l e  v e l o c i t y  can be approximated by r e l axa t ion  times of t h i s  form. 

This includes ion ized  impurity s c a t t e r i n g  and s c a t t e r i n g  by acous t i c  phonons. 

In  the  following d iscuss ion ,  it w i l l  be assumed t h a t  the  a c t i o n  of t w o  

o r  more simultaneous s c a t t e r i n g  mechanisms can be represented by: 

‘net  ii ‘A ii LI  ii 

where (TA)ii and (TI)ii a r e  the  r e l axa t ion  time t enso r  elements f o r  acous t i c  

phonon and ion ized  impurity s c a t t e r i n g ,  respec t ive ly .  The presense of add i t iona l  

s c a t t e r i n g  mechanisms, such as neu t r a l  impurity s c a t t e r i n g ,  w i l l  no t  be  

cons i dered. 

The following func t iona l  forms f o r  the  n e t  r e l axa t ion  t i m e  w i l l  be 

considered: 
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A. Constant r e l axa t ion  time: 

T = TO a constant  

B. Constant t enso r  r e l axa t ion  t i m e :  

(! h where A,B,C a re  constants  
Y 
T -  

C. Sca la r  function of energy r e l axa t ion  t ime :  

T = F(E), F(E) is a funct ion of e l e c t r o n  (hole) energy 

D. Relaxation time tensor  with a f ac to rab le  energy dependence 

T~ and T 1’ 3 where T 

i s  some function of energy. 

are constants  (not necessa r i ly  equal)  and F(E) 

E. Relaxation time tensor  with an unfactorable  energy dependence: 

Y 
T =  [ 

0 

I Figure 5 . l (a )  shows the  shape and dimensions of the  p r imi t ive  orthorhombic 
i 
i u n i t  c e l l  of the  ZnSb c r y s t a l  s t r u c t u r e .  Figure 5. l (b)  shows one oc tan t  of 

the  f i r s t  Br i l lou in  zone of ZnSb. F ina l ly ,  a n t i c i p a t i n g  the  r e s u l t s  of 

Sect ion 5.7, Figure 5. l (c)  presents  one oc tan t  of a su r face  of constant  energy 

f o r  one poss ib le  model of the  ZnSb valence band. 

5.4 ISOTROPY OF THE THERMOELECTRIC POWER 
I 

i 
As discussed in  Section 4.3.2 and i l l u s t r a t e d  by Figure 4.3, the  thermo- 

e l e c t r i c  power of p-type ZnSb i s  i so t rop ic .  

the  thermoelec t r ic  power has the form (Eq. A.2.84): 

For a s i n g l e  general  e l l i p s o i d  
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C(E-l$,)Tii> 

<T > ii 
(5 2) 

i j  
6 1 

I -  

QiJ Tq 

It i s  seen tha t  relaxation times of the forms A, B, C, and D ,  above, 

w i l l  give an i so t ropic  thermoelectric power. In  general a relaxation t i m e  

of the form E w i l l  not give an isotropic  thermoelectric power. 

5.5 ISOTROPY OF THE HALL COEFFICIENT 

As discussed i n  Section 4.5 and i l l u s t r a t e d  by Tables 4.2, 4.3 and 4.4 the 

For a s ingle  general e l l i p so id  Hall coeff ic ients  of p-type ZnSb are  isotropic.  

the H a l l  coeff ic ient  of ZnSb has the form (Eq. A.2.88): 

<T T > 1 ii 
'i jk  = -  E i j k  <Tii><f: j >  (5.3) 

It i s  seen tha t  relaxation times of the form A, B,  C and D, above, w i l l  give 

an i so t ropic  Hall e f f ec t .  

give i so t ropic  Hall coef f ic ients .  

In general a relaxation time of the form E w i l l  not 

5.6 

5.6.1 Numerical Symnetrv i n  the On-Axis Measurements 

OBSERVATIONS FROM TIIE MAGNETORESISTANCE MEASUREMENTS 

As mentioned i n  Section 4.7.3.1 and shown by Table 4.5 the following 

numerical symmtry w a s  observed i n  the results of the magnetoreaiatance 

me 88 uremen t s : 

'2211/'22 '33llIP33 
(90 . 95 

(5 4) 

P1133'P11 '2233"22 
(53 log7 - 50 10'~) 
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The observed numerical r e s u l t s  have been i n s e r t e d  beneath the l i teral  

expressions. Using Equations A.2.89 i t  is seen tha t :  

fmplies t ha t :  

which reduces to: 

Notice t h a t  a re laxa t ion  t i m e  of the forms A o r  B w i l l  give a magnetoresistance 

which i s  iden t i ca l ly  zero. Thus, t he  above expressions are s a t i s f i e d  t r i v i a l l y  

and have no physical s ign i f icance .  Relaxation times of the  form C and D w i l l  

s a t i s f y  Eq. 5.6. A re laxa t ion  time of the form E w i l l  no t ,  i n  general ,  s a t i s f y  

Eq. 5.6. 

Similarly Equations 5 . 5  and 5.6 imply tha t :  

2 <T22 2 T l l > < T l l >  

2 = <f33 T l l > < f l l >  

11 T22> <T22> 

11 T33> <‘33> 

<T 

<T 
2 

(5.9) 

(5.10) 

The above discussion appl ies  here ,  also.  These equations are s a t i s f i e d ,  i n  

general ,  only by re laxa t ion  times of the form C and D. 

5.6.2 Lonnitudinal Magnetoresistance on Off-Axis Samples 

As w a s  mentioned i n  Section 4.7.3.1 and shown by Figures 4.29 and 4.30, 

the off-axis longitudinal magnetoresistance i s  c lose  t o  zero i n  the  two 

d i f f e r e n t  off-axis o r i en ta t ions  which were measured. I n t u i t i v e l y  t h i s  $ght 
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be a d i s tu rb ing  r e s u l t .  It might be expected t h a t  a zero longi tudina l  magneto- 

r e s i s t ance  would be observed only when B and J are p a r a l l e l  t o  a p r inc ipa l  axis 

of a valence band which has a general e l l i p s o i d  f o r  a constant energy surface.  

+ + 

However, as is shown i n  Appendix 3, the  longi tudina l  magnetoresfstance 

of an energy band which has a general e l l i p s o i d  f o r  a constant energy sur face  

vanishes regardless of the d i rec t ion  of the electric cur ren t  density vector.  

This r e s u l t  i s  only t r u e ,  i n  general, f o r  re laxa t ion  times of the  form C and D 

of Section 5.2. Hence, the  fact t h a t  the  observed longi tudina l  magnetoresistance 

is  prac tkca l ly  zero i s  e n t i r e l y  cons is ten t  with the s i n g l e  general e l l i p s o i d  

valence band model. 

5.6.3 Probable Form of the  Relaxation Time 

The above discussion reasonably e s t ab l i shes  t h a t  a re laxa t ion  time 

appropriate t o  p-type ZnSb is  e i t h e r  a s c a l a r  function of energy (form C of 

Section 5.2) 

T = F(E) (5.11) 

o r  a tensor  with a fac torable  energy dependence: 

and T are  constants. 1' T2' 3 where T 

A re laxa t ion  t i m e  with e i t h e r  of these  two f o m  w i l l  account f o r  the  

experimentally observed: 

1. I so t rop ic  thermoelectric power (at O'C) e 

2. I so t rop ic  H a l l  e f f e c t  (300'K and 77.3'K). 

3. Numerical symmetry i n  the on-axis (3 p a r a l l e l  t o  a p r inc ipa l  

c r y s t a l  ax is )  longitudinal magnetoresistance r e s u l t s  (77.3'K) 
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-% 
4. Approximately zero longi tudina l  magnetoresistance off-axis  (J 

no t  p a r a l l e l  t o  a p r inc ipa l  c r y s t a l  a x i s )  (77.3'K). 

The above re laxa t ion  times, forms C and D ,  f i t  the  symmetry of the  observed 

r e s u l t s  even though mixed s c a t t e r i n g  i s  important - espec ia l ly  a t  77.3'K 

i n  the  magnetoresistance samples cu t  from c r y s t a l  C-1078-C ( r e f e r  t o  the  H a l l  

mobil i ty  vs. temperature curves on Figure 4.9). 

For s c a t t e r i n g  by acous t i ca l  phonons: 

('A'ii = ( T p ) i i  E-1/2 (5.13) 

and f o r  s c a t t e r i n g  by ionized impur i t ies :  

where T ~ ( T )  and r i (T)  are temperature dependent coe f f i c i en t s .  

these two expressions according t o  Eq. 5.1 y i e lds :  

Combining 

+ ( - 1 ) (5.15) 
A ii Ti ii (T n e t  ii 

where i - 1, 2 ,  3. 

From the  func t iona l  form of Eq. 5.15 i t  i s  seen t h a t  the  n e t  r e l axa t ion  

time w i l l  be an i s o t r o p i c  funct ion of energy (form C o r  Eq. 5.11) i f  t he re  i s  

no anisotropy i n  t h e  acous t ic  phonon o r  ion ized  impurity s c a t t e r i n g .  On the  

o the r  hand the  n e t  r e l axa t ion  time w i l l  be a tensor  with a f ac to rab le  energy 

dependence (form D o r  Eq. 5.12) only if both acous t i c  phonon and ion ized  

impurity s c a t t e r i n g  have the same anisotropy. 

There i s  no reason t o  chosse r e l axa t ion  form C over r e l axa t ion  form D 

without f u r t h e r  experimental work on ZnSb. This work would inc lude  a r e l i a b l e  

determination of the e f f e c t i v e  masses of the  ho le s ,  of t he  v e l o c i t i e s  of sound, 

the  deformation po ten t i a l s  and the  s t a t i c  d i e l e c t r i c  constants  of ZnSb. 



-127- 

5.7 COMPARISON OF MAGNETORESISTANCE AND MOBILITY RATIOS 

Using the r e s u l t s  of Appendix 2 (Equations A.2~87, 88 and 89) i t  i s  seen 

tha t  the magnet ores i s t ance : 

and the H a l l  mobility: 
a 

and the electrical  conductivity 

(5.16) 

(5.17) 

(5.18) 

where i # j # k and can range over any of the  s i x  permutations of 1, 2 and 3. 

I n  the  above: 
m 

i - 1, 2 ,  3 i 

i 
Bi f (7); (5.19) 

The r e l axa t ion  time has been assumed t o  be of fonn D: 

where f l  + t2 + f 3  and a l l  are constants a t  a given temperature. 

function of energy. 

have been derived f o r  a valence band of a general e l l i p s o i d a l  form and which 

F(E) is a 

Fina l ly ,  t h e  above forms of Equation 5.17, 5.18 and 5.19 

has  i t s  p r i n c i p a l  axes p a r a l l e l  t o  t he  p r inc ipa l  axes of the  c r y r t a l .  

Notice t h a t  a d i r e c t  check on the  v a l i d i t y  of t he  magnetoreristance 

r e s u l t s  can be made. Using the ca lcu la ted  magnetoresistance coe f f i c i en t s  

and tak ing  care t o  use r a t i o s  that  contain only one form of pii: 
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5 
’k 

(5.20) 

Likewise, using t h e  Hall mob i l i t i e s :  

and the  e l e c t r i , c a l  conduct iv i t ies :  

kk = 5 0 - 
9 1 ’k 

(5.21) 

(5.22) 

The r e s u l t s  obtained are summarized i n  Table 5.1. The magnetoresistance 

r e s u l t s  of Table 4.5 were used t o  compute the  magnetoresistance r a t i o s .  Notfce 

t h a t  i f  the  re laxa t ion  i s  i s o t r o p i c  (form C ) ,  then the  r a t i o s  of the  Bii’s are 

ac tua l ly  equal  t o  the  r a t i o s  of the  hole  e f f e c t i v e  masses. A sketch of oqe 

quadrant of a sur face  of constant energy i n  the  valence band, ca l cu la t ed  

under t h i s  assumption, appears as Figure 5 . l ( c ) .  This t a b l e  shows t h a t  the  

magnetoresistance da ta  f s  e n t i r e l y  cons i s t en t  with the  H a l l  mobil i ty  a n d  

e l e c t r i c a l  conductivity data .  The magnetoresistance r a t i o s  e.g. ; 

’ 331 1” 11 

’3322”22 

have a probable accuracy of about 5 10% and the mobil i ty  and conduct ivi ty  

r a t i o s  about 5 5%. 

The observed numerical agreement i n  Table 5.1 is a demonstration of the  

v a l i d i t y  of the  band s t r u c t u r e  model assumed f o r  p-type ZnSb. 



c 
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TABLE 5.1 

COMPARISON OF MAGNETORESISTANCE RATIOS 
AND THE RATIOS OF HALL MOBILITIES 

OR ELECTRICAL CONDUCTIVITIES 

A l l  of t he  fol lowing q u a n t i t i e s  were measured experimental ly:  

A. MAGNETORESISTANCE RATIOS: 

Crys ta l  C-1078-Cy p 'L 4 x 1017 C U I - ~ ,  77.3'K 
Data taken from Table 4.5: 

$3  53 - - = - = 0.37 
143 

p1133'pll 

122 1 82 

81 95 = - = - 0.61 p3311fp33 
'3322"33 '2 15 7 

50 = 0.56 90 
$3 

P2211f p22 $1 
'2233"22 = - p -  

B. HALL MOBILITY RATIOS: 

(1). Crys t a l  C-1078-Cy p 'L 4 x 10 l7 cm3, 77.3"K 
Data shown on Figure 4.9: 

'a $3 9150 I o.62 
'c $1 1860 
-=-I- 

(2).  Crys t a l  C-1078-Cy p 4 x 10 l7 300'K 
Data shown on Figure 4.9: 

% 81 290 
4 30 

-=-.I- ' 83 o 0.39; - = -I - I 0.67 
82 750 % 82 

s- -I- " B3 ;:: = 0.57 
% 
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(3). Komiya, Masumto apd Fan(5), p 'L 2 x 10l6 ~ m - ~ ,  273'K 
Undoped c rys t a l ,  their Figure 2: 

0.34; - ' - - " = - 210 = 0.52 % '3 210 
-=-I-= 

405 'a '2 'C B2 620 

'a '3 405 o.65 a- P- - 
620 'c '1 

16 -3 (4). Crystal C-1081-C, p 2, 2 x 10 c m  , 273'K 
Undoped crys ta l ,  data shown on Figures 4.6 and 4.7: 

p - = 0.40; - ' - " t - 330 = 0.63 % '3 330 
830 

I- - 
5 20 'a '2 % '2 

-=-a- " B3 i:: = 0.63 
'c '1 

C. ELECTRICAL CONDUCTIVITY RATIOS: 

19 -3 Crystal  C-1075-B, p 'L 1.1 x 10 cm , 273'K 
Typical of the data of Figure 4.3: 

E -  '3 = -  370 = 0.39; - P-=- " 370 I 0.60 b U b U - 
615 ua 82 u B2 950 

C 

U 
- = - a -  a '3 614 P 0.64 
u B1 950 

C 
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5.8 ESTIMATION OF THE EFFECTIVE MASSES 

Using thermoelectric power data, the  carrier concentration obtained from 

Hall e f f e c t  measurements, and an assumed form of the re laxa t ion  t i m e ,  the  

dens i ty  of states e f f e c t i v e  mass can be estimated. (7) Using experimental 

r e s u l t s  f o r  c r y s t a l  C-1078-C a t  O°C and assuming t h a t  la t t ice  s c a t t e r i n g  

(acous t ic  phonon s c a t t e r i n g )  is dominant at O°C (see Figure 4.9), the  value 

obtained is: 

md = 0.42 mo 

where mo i s  the  rest mass of a f ree  e lec t ron .  

From Appendix 2 ,  Equation A.2.68: 

Assuming t h a t  the  r e l axa t ion  time i s  i s o t r o p i c ,  Table 5.1 y i e l d s  

ml 

"2 
- = 0.61 

- m3 = 0.37 

"2 

Combining these  equations y i e l d s  : 

y - 0.42 mo 

9 = 0.69 mo 

m3 = 0.26 mo 

Thase results are only approximate. 

(5.23) 

( 5 . 2 4 )  

(5.25) 

(5.26) 
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CHAPTER 6 

SUMMARY AND RECOMMENDATIONS FOR FURTHER WORK 

6.1 SUMMARY 

This work has descr ibed the  preparat ion,  growth, doping, and c u t t i n g  of 

p-type ZnSb s i n g l e  crystals (Chapter 2). Instrumentat ion and techniques f o r  

the  measurement of the  t h e m e l e c t r i c  power and thermal conduct ivi ty  (at  O O C ) ,  

electrical r e s i s t i v i t y  and Hal l  mobili ty (77.3'K t o  32S°K), and magneto- 

resistance at 77.3'K have been described (Chapter 3) and the  measurement r e s u l t s  

presented (Chapter 4). Reversible changes i n  the  hole  concentrat ions of undopcd 

c r y s t a l s  were found t o  occur under annealing a t  e leva ted  temperatures (Chapter 4). 

Measurements a t  O°C i n d i c a t e  (Section 4.3.4) a maximum thermoelectr ic  

f i g u r e  of merit of 0.74 x 10 -3 ("K)-l. The f i g u r e  of merit may be  considerably 

improved by reducing the  comparatively l a rge  thermal conduct ivi ty  of the  s i n g l e  

c r y s t a l s  (0.037 w a t t s / c m - O K  as opposed t o  110.014 f o r  po lyc rys t a l l i ne  material). 

The experimentally observed r e s u l t s  of t he  galvanomagnetic measurements 

have been shown (Chapter 5) t o  be cons i s t en t  with a model of the  valence band 

which assumes tha t :  

1. A s i n g l e  e l l i p s o i d  describes a su r face  of constant  energy. This 

e l l i p s o i d  is  assumed t o  be a general  e l l i p s o i d  with the  corresponding 

e f f e c t i v e  masses, ml, m2 and m 

coincide with those of t he  crystal. 

2. The r e l axa t ion  t i m e  i s  e i t h e r  a scalar func t ion  of energy o r  a 

diagonal tensor  with a fac torable  energy dependence. This tensor  has 

been assumed to  be diagonal i n  the  p r i n c i p a l  axis system f o r  the  c r y s t a l .  

A numerical comparison (Table 5.1) of e q u a l i t i e s  i n  magnetoresistance 

The p r i n c i p a l  axes of t h i s  e l l i p s o i d  3' 

r a t i o s  and H a l l  mobil i ty  r a t i o s  has been made. 

t he  above model of the  conduction processes have been observed and are found 

The r e l a t i o n s  expected from 
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t o  be  i n  good agreement. 

6.2 RECOMMENDATIONS FOR FURTHER WORK 

It i s  f e l t  t ha t  immediate experimental  e f f o r t  i s  b e s t  placed i n  the  follow- 

i n g  areas: 

1. The growth of s i n g l e  c r y s t a l  i n  con t ro l l ed  atmospheres of antimony o r  

z inc  vapor should be inves t iga ted .  

stoichiometry may result  i n  the  production of n-type s i n g l e  c r y s t a l s .  

t o  the present  t i m e  chemical doping has not  produced n-type c r y s t a l s .  

2. The annealing phenomena-the increase  i n  hole  concentrat ion with 

increased ambient temperature--should be inves t iga t ed ,  

i n  which f u r t h e r  work i s  needed have been ou t l ined  i n  Sect ion 4.2.4. 

There is  probably a d i r e c t  l i n k  between t h i s  observed phenomena and the  

high temperature (4OOOC) i n s t a b i l i t i e s  which previous workers have 

observed i n  thermoelectr ic  elements constructed from ZnSb. 

3. Attempts should be made t o  reduce the  l a rge  l a t t i c e  cont r ibu t ion  t o  

the  thermal conduct ivi ty  of t h i s  material. This could possibly be 

done by incorporat ing a t h i r d  atom i n t o  the  z inc  antimonide c r y s t a l  

l a t t i c e  . 
4. Deta i led  galvanomagnetic measurements should be extended t o  undoped, 

p-type mater ia l .  

t h a t  each measurement sample has an i d e n t i c a l  thermal h i s t o r y .  This 

w i l l  avoid the changes i n  c a r r i e r  concentrat ion with t i m e  t h a t  have 

been observed on annealed c r y s t a l s  i n  t h i s  work. 

of these galvanomagnetic measurements would confirm the  model of the  

conduction processes i n  p-type ZnSb which has been developed i n  t h i s  

work. 

The r e s u l t i n g  con t ro l  of c r y s t a l  

Up 

The s p e c i f i c  areas 

The measurement program which is used must i n su re  

Hopefully,  the  r e s u l t s  

. 
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5 .  An independent and unambiguous determination of the  absolute e f f e c t i v e  

masses of t he  charge c a r r i e r s  should be made. 

cyclotron resonance or the magnetooptical techniques. 

would hopefully subs t an t i a t e  the valence band model which has been 

proposed i n  t h i s  work. It would be  a l s o  then poss ib le  t o  obta in  a 

d i r e c t  measure of the poss ib le  anisotropy i n  the  re laxa t ion  t i m e  f o r  holes 

in ZnSb. 

This can be done by 

These experiments 



- 136- 

APPENDIX I 

MACROSCOPIC SYMMETRY CONSIDERATIONS I N  THE DZh POINT GROUP 

Each of the  second order  t r anspor t  t enso r s ,  such as e l e c t r i c a l  and thermal 

conduct ivi ty ,  and thermoelectr ic  power, can be phenomenologically expanded as a 

Taylor s e r i e s  i n  magnetic f i e l d  s t r eng th ,  In  the  l i m i t  of low enough magnetic 

f i e l d  s t r eng ths ,  the  sum of the  f i r s t  few terms of the  Taylor series expansion 

w i l l  supply a good approximation t o  the  ac tua l  numerical value of any one of the  

elements of t he  second order  t ranspor t  tensors .  The c o e f f i c i e n t s  corresponding 

t o  the same power of magnetic f i e l d  s t r eng th  i n  the  phenomenological expansions 

can be grouped together  i n  such a way t h a t  they themselves are the  elements of 

tensors  o r  pseudotensors. These tensors  a r e  of rank two o r  grea te r .  The 

purpose of t h i s  appendix is t o  der ive  the  zero elements of these phenomenological 

tensors  from macroscopic symmetry considerat ions.  

Before continuing i t  is of i n t e r e s t  t o  note  t h a t  Ti02, gallium, c r y s t a l l i n e  

benzol, cadmium antimonide and mater ia l s  with the  Olivine c r y s t a l  s t r u c t u r e  

share  the same point  group with zinc antimonide, 

The D;; space group contains th ree  mutually perpendicular ,  r i g h t  handed, 

180° screw axes and a cen te r  of invers ion  as i t s  non- t r iv ia l  microscopic 

symmetry elements. For the purpose of macroscopic t r anspor t  experiments, the  

one ha l f  of a u n i t  c e l l  edge t r a n s l a t i o n  i n  a screw symmetry operat ion i s  not  

de tec tab le .  Hence the  pe r t inen t  symmetry p rope r t i e s  can be charac te r ized  as 

those of the  DZh point group. 

fo ld  r o t a t i o n  axes and a cen te r  of inversion.  

mutually perpendicular r e f l e c t i o n  planes.  Choosing the  former representa t ion ,  

the  generating operat ions,  i n  the  p r i n c i p a l  coordinate  system of the  u n i t  c e l l ,  

a r e  : 

These a r e  three  mutually perpendicular two- 

These are equivalent  t o  th ree  
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I. 180' r o t a t i o n  about the  "1" ("x" o r  ''a'') axis :  

( a i j )  

0 

-1 
0 -1 9 

11. 180° r o t a t i o n  about the  "2" ("y" o r  "b") ax is :  

111. 180' r o t a t i o n  about the  ''3" ("z'l o r  "cl') axis :  

I V .  Center of inversion: 

V. I d e n t i t y  operat ion:  

> 1 

-1 > 
> 

The electrical r e s i s t i v i t y  w i l l  be used as an example i n  the  following cal- 

cu la t ion .  

excluding those a lgeb ra i c  condensations r e s u l t i n g  from the  appl ica t ion  of 

Onsager symmetry, apply t o  any second order  tensor  c r y s t a l  property t h a t  can 

be expanded, a t  least formally, i n  a Taylor series i n  the magnetic f i e l d .  

It should be remembered t h a t  t he  r e s u l t s  of the  ca l cu la t ion ,  

From the  d e f i n i t i o n  of a tensor:  
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. 
where a coordinate i n  the  transformed coordinate system i s  denoted by a primed 

subscr ip t .  

s t a t e d .  

the  func t iona l  ind ica t ion  of the  magnetic f i e l d  s t r eng th  components, H1, H2, 

Hg. 

The Einstein summation convention i s  used here  unless  otherwise 
+ 

The impl i c i t  dependence on magnetic f i e l d  s t r eng th ,  H, i s  denoted by 

The magnetic f i e l d  s t r eng th  i s  a pseudovector, t h a t  i s  

i j '  
where I la1 I i s  the determinant of  the  transformation matrix,  a 

Applying synrmetry operat ion I(18Oo r o t a t i o n  about the  x o r  "1" a x i s ) ,  

i t  is seen t h a t :  

where Hl1 = , H1 

H2' - -H2 

Since the  transformation i s  a symmetry operat ion,  t he  (1 ' )  ax i s  i s  experimentally 

equivalent  t o  the  (1) axis .  Thus: 

Applying synrmetry operation 11: 

Applying symmetry operat ion 111: 

The o ther  symmetry operat ions,  o r  combinations the reo f ,  y i e l d  no new information. 

The above three s y m e t r y  r e s u l t s  i n d i c a t e  t h a t  a Taylor series expansion 
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H H H  (A. 1.1) 
+ 

P1l(H) P1lo+Pllk% + 'llklHkHR + PllkRm%HRHm + 'llkRmn% R m n 

2, H3, even i n  H m u s t  be func t iona l ly  even i n  H H3, and even i n  H1, . 1' HZ 
Hence, the  zero f i e l d  r e s i s t i v i t y :  

Pl10 # 0 

The component of the Hall  e f f e c t  tensor: 

= o  ' llk 

component of the magnetoresistance tensor i s  a second rank tensor. The ' l l k t  

It has nine elements. In  order t o  sys temat ica l ly  consider the  elements of t h i s  

tensor,  the following cases may be defined: 

Case I: k = 11 

(3  elements) Thus 'llkll 'llkk' 

From the  above r e s u l t s  of t h e  symmetry considerations,  i t  i s  seen tha t :  

$ 0  '1111, '1122, '1133 

Case 11: k # R (6 elements) 

The above r e s u l t s  of the symmetry considerations i t  i s  seen that:  

= 0 f o r k  # R 'llkR 

Continuing with the  next Taylor series t e r m  which i s  cubic i n  H: 

'llkllm 

i t  is  seen t h a t  twenty-seven elements have t o  be considered. 

systematic fashion, the  following cases can be considered: 

Proceeding in a 

Case I: k = 11 = m (3  elements) 

Thus: 'llkim 'llkkk 

From the above r e s u l t s  of the symmetry considerations: 

= o  llkkk 
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, 

Case 11: k = 11 # m (18 elements)  

It should be remembered t h a t  s i n c e  k ,  R, and m are dummy i n d i c e s  which are used 

i n  t h e  E i n s t e i n  summation convention w i t h i n  the  Taylor  series expansion: 

H Hm = H H %, etc. 'llkRm Hk R '11mRk m R 

The condi t ion  k - R # m is equ iva len t  t o  k # R = m. 

from symmetry, as above: 

A t  any rate, reasoning 

= o  'llkk11 a ' llkllk = 'llRkk 

Case 111: k # R + m (6 elements)  

I n  t h i s  case (without the  a p p l i c a t i o n  of Onsager symnetry): 

'11123 = '11231 = '11312 = '11213 = '11321 = '11132 ' 
The p o s s i b l e  non-zero n a t u r e  of t h e s e  elements fol lows from t h e  symmetry 

arguments. The equa l i ty  of t hese  six elements fol lows from t h e  f a c t  t h a t  

they are simply symbols f o r  equ iva len t  p a r t i a l  d e r i v a t i v e s  i n  a Taylor  series 

expansion. Notice t h a t  3 + 18 + 6 = 27. Thus, a l l  p o s s i b l e  twenty-seven 

e lemen ts have been cons i dered. 

F i n a l l y  consider:  

' l l k t m  

which i s  q u a r t i c  i n  H. I n  t h i s  case, eighty-one elements must be considered. 

Proceeding sys temat ica l ly :  

Case I: k - 11 = rn = n ( 3  elements) 

'llkkkk ' 
(18 elements)  

'l1kkRR ' 
Case 11: k = R # m * n 
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Case 111: k = E = m # n (24 elements) 

'llkkkll 

Case IV:  k = E # m # n (36 elements) 

= o  ' 1 lkkm 

Notice again t h a t  3 + 18 + 24 + 36 = 81. 

Col lec t ing  these  r e s u l t s ,  including a summation of equivalent  terms i n  the  

Taylor series expansion: 

H H H  2 2 2 

4 4 4 
P1l(H) = '1"l + 'llllHl + P1122H2 + P1133H3 4- 6p11123 1 2 3 

H ~ H ~  (A. 1.2) 
+ PllllllHl + P112222H2 + '113333 3 + 6'111122 1 2 

H ~ H ~  
+ 6'111133 H2H2 1 3 -k 6p112233 2 3 

through fourth order  term i n  H and without t he  app l i ca t ion  of Onsager symmetry. 

The expansion of t he  o t h e r  e igh t  elements of p (g) can be derived i n  

exac t ly  the  same manner. Table A-I summarizes the  r e s u l t s  of the  complete 
i j  

ca lcu la t ion .  The proper mul t ip l i ca t ive  numerical f a c t o r s  which r e s u l t  from the  

summation of equiva len t  terms i n  the Taylor series expansion are included. Notice 

t h a t  Onsager symmetry has not  been introduced as ye t .  Hence, these r e s u l t s  can 

be appl ied  t o  the  small magnetic f i e l d  expansions of any second order  tensor  

property of a D2h po in t  group crys ta l .  

The e l e c t r i c a l  r e s i s t i v i t y  should e x h i b i t  t h e  following Onsager symmetry: 

(8) = pji(-8). In  addi t ion  to  supplying r e l a t i o n s  between of f  diagonal 'il 
= 0.  '11123 '22123 31 '33123 elements,  t h i s  add i t iona l  condition requi res  t h a t :  

Each of the above results may be recovered from the  following expansion. & 

t h i s  expansion the  Eins te in  summation convention has been abandoned. The l i t e r a l  

s u b s c r i p t s  mean t h a t  the  components a re  t o  be assigned according t o  the  following 

l is t  of permutations: 

- i S k  
1 2 3 
2 3 1 
3 1 2 
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0 2 2 2 
Ei Ji ('ii + 'iiii Hi + ' i i j  j 'j + ' i ikk Hk) 

+ J j  ('ilk Hk + p i j i j  H i a )  j 

Jk ('ikj Hj  + ' ikik Hi Hk' 

with the following h igher  order  terms: 

4 4 4 
+ Ji ('iiiiii Hi + ' iij j j j Hj + 'iikkkk Hk 

2 2  2 2  
+ p i i i i j j  i j ' i i i i k k  Hi Hk 

2 2  + ' i i j j k k  'j %) 

+ 

3 
+ J j  ('ijkkk Hk 

H 3 H  + 4  

2 
+ l2 ' i j i j k k  H H  i j Hk 

+ p i j i i i j  i j 

+ 'ikikkk i 4 + ' ik i i ikH2 Hk 

+ l2 ' i k i j j k  H i H2 j 
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+ 
I n  general, throughout t h i s  work B i s  used i n  the  magnetic f i e l d  

expansions. 

t h a t  B = l~ H f o r  non-ferromagnetic c r y s t a l s ,  where p0 i s  the  permeability 

of f r e e  space, vo = 4n x lo-’ henries ? e r  meter. The r e s u l t s  of t h i s  

appendix are va l id  whether B o r  H i s  used i n  the expansions. 

This should cause no confusion, s ince  i t  can be assumed 

0 

+ + 

! 



-145- 

APPENDIX 2 

THEORETICAL DERIVATION OF THE TRANSPORT COEFFICIENTS OF A GENERAL ELLIPSOID 

A 2 . 1  THE BOLTZMANN TRANSPORT EQUATION 

The Boltzmann t ranspor t  equation is  the cont inui ty  equation i n  phase space. 

Numerous textbooks and o the r  references discuss the formulation of t h i s  

equation and methods of so lu t ion  (1-5) 

Using M.K.S. un i t s ,  t h i s  equation m y  be w r i t t e n  as: 

here: f = the s ta t i s t ica l  d i s t r i b u t i o n  function which d i s t r i b u t e s  

e lec t rons  (or  holes) over the ava i l ab le  energy states. 

k = the wave vector which is  used t o  l a b e l  the  energy states 

i n  rec iproca l  space. 

r - the  real space coordinates of an e lec t ron .  

(g) = the time rate of change i n  the  e l e c t r o n i c  (hole) dis- 
C 

t r i b u t i o n  function due t o  "co l l i s ion"  in t e rac t ions .  

V - the gradient operator i n  real space. 

N 
V = the gradient operator i n  rec iproca l  space: 

+ 
where the  I,, ikx, etc. are the  appropriate u n i t  vectors. 
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In  general ,  t he  d i s t r i b u t i o n  funct ion is a funct ion of real space and rec iproca l  

space coordinates:  
+ +  

f = f ( k , r )  

I n  the  s teady s ta te  (constant appl ied  f i e l d s )  the  Boltzmann equation 

becomes : . 
rJ af (A. 2.1) k' Vf +: Vf = (at) 

C 

(3) Now, i t  has been shqwn tha t :  . 
(A. 2.2) 

(A. 2.3) 

+ +  -1 13 r 2 v = (h) VE 

k ' =  (h)-l F = q(5) 
-1 + 

( E  + 5 x s) 
where: 5 - 2n' h be ing  Planck's constant  (hs6.628 x 

E E E(k) = descr ibes  the  t o t a l  energy of a s i n g l e  e l ec t ron  with 

joule-sec.) 
+ 

-+ 
wave vec tor  k i n  rec iproca l  space. 

+ 
E = t he  t o t a l  e l e c t r i c  f i e l d  which acts on an e l e c t r o n  (hole).  

F = the  acce le ra t ing  force due t o  e lectromagnet ic  f i e l d s .  

q = t he  t o t a l  charge of the  electrical conduction species .  

+ 

= - 1.601 x coulomb f o r  e l ec t rons .  

= + 1.601 x coulomb f o r  ho les .  

2 If = t he  appl ied magnetic f l u x  dens i ty  i n  Weberslm . 
Hence, the  Boltzmann equation becomes: 

(A, 2.4) -1 - 4 af q(6)" (d + (4) VE x 8) Vf + ?E Vf = (x) 
C 

Once again,  no te  tha t  q i s  numerically negat ive f o r  e l e c t r o n  conduction and 

numerically pos i t i ve  f o r  ha l e  conduction. 

Assume t h a t  the conduction medium i s  chemically homogeneous. Then, i n  

equi  l i b  ri urn: 
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1 

where f (Z) is  the  Fermi-Dirac d i s t r i b u t i o n  function. 

Here : k = Boltzmann's constant,  1.38 x joule/OK. 

+ 
(not t o  be confused with the  wave vec to r ,  k ,  which w i l l  

always be w r i t t e n  as a vec tor ) .  

EF = the  Fermi l eve l ,  or  e lectrochemical  p o t e n t i a l  of the  p a r t i c u l a r  

conduction spec ies  (holes  o r  e l ec t rons ) .  

It should be noted t h a t  EF is an e x p l i c i t  funct ion of the  absolute  

temperature T. When a temperature grad ien t  is  appl ied t o  the  conduction 

medium, T becomes an explicit function of pos i t i on  and, therefore ,  EF(T) 
' 

is an implicit funct ion of pos€t ion i n  real space. 

I f  the  appl ied  f i e l d s  only s l i g h t l y  per turb  the  d i s t r i b u t i o n  funct ion 

from i ts  equi l ibr ium value,  t h e  per turbed d i s t r i b u t i o n  funct ion may be 

' w r i t t e n  as: 

+ 3  + (*)-I r~ afo  
OE aE + ... f ( k , r )  - f o  - G (A.2.5) 

This i s  equivalent  t o  expanding the d i s t r i b u t i o n  funct ion i n  sphe r i ca l  

harmonics i n  r ec ip roca l  space(5). 

energy only and the  "equilibrium" d i s t r i b u t i o n  funct ion,  f o ,  can vary with 

Here, 5 i s  an e x p l i c i t  funct ion of 

pos i t i on  i n  real space due to  the appl ied  temperature gradient:  

It i s  now assumed t h a t  surfaces  of constant  e l ec t ron  (hole)  energy i n  

r ec ip roca l  space a r e  general  e l l i p so ids .  That i s  : 
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where 

1 
m 

0 

- 
1 

0 

0 

1 - 
"2 

0 

(A. 2.6) 

( A . 2 . 7 )  

is the  r ec ip roca l  e f f e c t i v e  mass tensor.  The following convention regarding 

sbusc r ip t s  i s  a l s o  being introduced here:  Whether i n  real space o r  

rec iproca l  space 

I1 I 1  x component --.+ "1" 

"y" component + "2" 

z component --+ "3" 11 I1 

The presence of one energy extremum w i l l  be assumed and i t  i s  assumed 

t h a t  the  p r i n c i p l e  coordinates of t he  e l l i p s o i d a l  approximation t o  t h i s  

extremum coincide with the  Cartesian coordinates  of r ec ip roca l  space. Hence, 

the  e f f e c t i v e  mass i s  a diagonal tensor  i n  t h i s  coordinate  system. 

It is  now assumed t h a t  a tensor  r e l axa t ion  t i m e  exists i n  a form 

( 5 ) .  defined by . 

(e) = + -  G v (Ti)-' YE a~ a f O  

C 

LI 
Here, v i s  the  inverse tensor  t o  the  fol lowing r e l axa t ion  time tensor:  

A A  
T P  

11 T 

0 

0 

0 

T22 

0 

P 

1 - 
T1 1 
0 1 0 0 

1 

0 

- 
22 f 

0 

0 

1 - 
33 T 

( A . 2 . 8 )  

( A . 2 . 9 )  
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The re laxa t ion  time tensor i s  assumed t o  be diagonal i n  the same coordinate 

and t can be d i f f e r e n t  11' T22' 33 
system as t h e  e f f e c t i v e  mass. In general, T 

functions of energy. Korenblit(6) has considered the case where the  assumed 

re laxa t ion  time i s  not diagonal i n  t he  same coordinate system as the  e f f e c t i v e  

mass t ens  or. 

I f  T - TO 6 (where 6 i s  the Kronecker d e l t a ) ,  the  above form f o r  
i j  i j  

the  c o l l i s i o n  term reduces t o  the familiar:  

f-f O a -  - (E) C T o  

The Boltzmann equation, Eq. A.2.4, can be l i nea r i zed  by i n s e r t i n g  the  

assurned form f o r  the  perturbed d i s t r i b u t i o n  function, Eq. A.2.5, performing 

the  d i f f e r e n t i a l  operations and keeping only the lowest order  non-vanishing 

terms. 
+ +  -1 N afo  With : f = f ( k , r )  = fo - 8 6) VE 

and: 

A a 2 fovE - (-ti)-' (G-VE) 7 
aE 

(A. 2.10) 

(A. 2.11) 

I n  Eq. A.2.11, only the f i r s t  term is important when vec tor  s c a l a r  product 

mul t ip l ied  i n t o  the  E: term of the Boltzmann equation. 
-+ 

The second term of 

Eq. A.2.11 is  the only term tha t  yives a nowzero  cont r ibu t ion  when vec tor  

s c a l a r  product mul t ip l ied  i n t o  the VE x B term of the Boltzmann equation. 
N - t  
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This is  because 

Thus, co l l ec t ing  Eq. A.2.8-10-11, the  Boltzmann equat ion,  Eq. A.2.4, 

may be w r i t t e n  as: 

+ 1  -1 L* a f o  q(6)" zo ?E (E - - VEF) - q(4)  VE x (8 W) a~ 
q 

1 a fo  + T(E-EF) ?E V (  r ) a~ 
A Y N  -1 afo = G v*VE (5) aE (A. 2.12) 

Now note  t h a t  the  t o t a l  e l e c t r i c  f i e l d  which a c t s  on a spec ies  of charge 

carrier i s  given by 

; = -  v4 

where 0 i s  the  t o t a l  e l e c t r o s t a t i c  p o t e n t i a l  ( v o l t s ) .  It i s  assumed t h a t  3 

i s  a d.c. magnetic f i e l d .  Hence, the  f i r s t  term of Eq. A.2.12 can be 

w r i t t e n  as: 

- 
Here, p = (q$ + EF) i s  the  nonequilibrium electrochemical  p o t e n t i a l  of the  

charge carrier species .  Recal l ing t h a t  

5 = ?E (A.2.2) 

and using the  above r e s u l t ,  the  Boltzmann equation, Eq. A.2.12, becomes: 

-+ -+ 1 - v * V ~  + T(E-EF)v V( 

- q 5 x ii*(E-3) = e - v - v  

) 

- + * +  
(A. 2.13) 

where the  common f a c t o r  of - a f o  has been cancel led out .  This equat ion holds aE 

on every sur face  of constant charge carrier energy i n  r ec ip roca l  space. 

The quant i ty:  

VG - T(E-EF) V(5) I - ,  5 P (A. 2.14) 
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is  a vec to r  which is  constant  i n  magnitude and d i r e c t i o n  over a su r face  of 

constant  energy. Reca l l ,  a l so ,  t h e  vec to r  i d e n t i t y  

Hence, the  Boltzmann equation can be  w r i t t e n  as: 

+ +  + e  -b - v P - q f x(z-%) = v*u*G 

o r  

2 [i: + q 3 x (&It) +'$ 81 - 0 
(A.2.15) 

(A.2.16) 
+ -t 

Since P and G are constant  on a sur face  of constant  energy - as a l s o  is  ? 

because of t he  assumed form of the  r e l axa t ion  t i m e  (Eq. A.2.9 and fol lowing) ,  

t he  bracketed quant i ty  i n  Eq. A.2.16 is  a constant  vector  over a constant  

energy su r face  i n  rec iproca l  space. Since s can vary both i n  d i r e c t i o n  and 

magnitude over a constant  energy su r face ,  the  bracketed term must be 

i d e n t i c a l l y  zero . 
$ + q S x ( & % ) + T - 8 = 0  (A. 2.17) 

The problem of obta in ing  the per turbed d i s t r i b u t i o n  funct ion has been 

reduced t o  so lv ing  t h i s  equation f o r  2. Before continuing with the  so lu t ion ,  

i t  is  usefu l  t o  c o l l e c t  the  ma jo r  assumptions and approximations which have 

been used t o  produce Eq. A.2.17. These are: 

1. The classical Boltzmann equation adequately descr ibes  the  e l e c t r o n i c  

conduction processes.  

2. The per turbed d i s t r i b u t i o n  funct ion has the  form of Eq. A.2.5. 

3. A tensor  r e l axa t ion  time exists. I ts  elements are funct ions of 

energy only. 

4. The energy band extremum responsible  f o r  the  conduction phenomena 

can be descr ibed as  a general e l l i p s o i d  i n  rec iproca l  space - Eq. A.2.6. 
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5 .  Both the e f f e c t i v e  mass and the  re laxa t ion  time tensors are 

diagonal i n  t h e  same coordinate system. This coordinate system i s  

taken t o  coincide with the p r inc ip l e  axes of t he  e f f e c t i v e  mass 

e l l i p s o i d .  

6 .  The Boltzmann equation has been l inear ized .  A s  wri t ten i n  the 

forms of Eq. A.2.15 o r  16,  the Boltzmann equation contains the 

electric f i e l d ,  E,  and thermal gradient,  VT, t o  t he  f i r s t  power only. 
-+ 

A.2.2 SOLUTION OF THE BOLTZMA" EQUATION I N  THE L I h I T  OF LOW MAGNETIC 

FIELD STRENGTHS 

For very small B,  the  second term of Eq. A.2.17 may be neglected. 
-+ 

Hence, t o  zeroth order i n  magnetic f i e l d  s t rength :  

+ y p) a 0 
o r  

-b 
$ 0 )  p "t . P 

A b e t t e r  approximation t o  the ac tua l  value of 8 can be obtained by using 

the  above r e s u l t  i n  Eq. A.2.17: 

o r  : 

Continuing t h i s  i t e r a t i o n  fo r  one more s t e p :  

(A. 2.18) 
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a 

A.2.3 MACROSCOPIC TRANSPORT COEFFICIENTS FROM IRREVERSIBLE THERMODYNAMICS 

Callen(7) has presented the  basic not ions and developments of 

i r r e v e r s i b l e  thermodynamics. I n  p a r t i c u l a r ,  h i s  one dimensional dynamical 

equations (equations 17.10, 11 and 12) can be d i r e c t l y  generalized t o  th ree  

dimensions as follows: 

LL L1 + 
JQ = L; T 

with the Onsager r e l a t ions :  - - (TI 
L; (+Z) = L; (-B) 

I n  the  above: 

T = absolute temperature - O K  

2 3 = matter f lux-part ic les /m -sec. N 

- 
p = electrochemical p o t e n t i a l  of t r anspor t  

(A. 2.19) 

(A. 2.20) 

(A.2.21) 

species  - jou les .  - 
0 - (TI 

= transpose of matrix L1, etc. L; 

L ALL Ld 

Li, L l ,  L; and Lo are second rank tensors  which cha rac t e r i ze  the  dynamics of 4 
t h e  physical  sys  t e m  under consideration. These tensors  are general ly  funct ions 

of the  in t ens ive  parameters of the  physical  system, such as temperature, T, 
-t 

and appl ied magnetic f i e l d ,  B. 
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It should a l so  be noted t h a t  Eqs. A.2.19 and A.2.20 are only l i n e a r  

approximations t o  the dynamical response of t he  phys ica l  sys  tern t o  appl ied  

forces". For small g rad ien ts  of e lectrochemical  p o t e n t i a l ,  L, and tew t l  

pera ture ,  T, the  l i n e a r  approximation w i l l  be adequate, e spec ia l ly  i f  the  

phys ica l  system i s  chemically homogeneous i n  equilibrium. F ina l ly ,  note  

t h a t  the  Boltzmann equation has been solved i n  a l i n e a r  approximation t o  

the  e f f e c t s  of V(i) and V(T) - (Eqs. A.2.10, 11-17). 

The e l e c t r i c  cur ren t  is j u s t :  

whe re q - - 1.601 x coulomb f o r  e l ec t rons  

= + 1.601 x coulomb f o r  holes .  

Hence, Eqs. A,2.19 and 20 can be rewr i t ten  as:  
n L I  

D e  f i n fng  : 

The above equations beconre: 
- 

1 + -  - - JE = L1 V(:) + L2 V ( 3  

- 
1 - + -  LL 

J * L V(:) + L4 V(y) 
Q 3  

(A. 2.22) 

(A. 2.23) 

(A. 2.24) 

(A. 2.25) 

(A.2.26) 

- A  
0 where now, because of t h e  Onsager r e l a t i o n s  on the  o r i g i n a l  Lo 1' L29 etc* 

(Eq. A. 2,21) : 
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(A. 2.2 7) 

The reason f o r  cas t ing  the  macroscopic dynamical equations i n  the  form 
L L I . L - L  LI 

of Eqs. A.2.25 and 26 is  t h a t  the c o e f f i c i e n t s  L1, L2, L., and L4 can be 

immediately i d e n t i f i e d  from the  corresponding equations which w i l l  be cal- 

cu la t ed  us ing  microscopic t ranspor t  theory. Ant ic ipa t ing  t h i s  ca l cu la t ion ,  

which appears as Section A.2.4, more f a m i l i a r  and usefu l  tensor  q u a n t i t i e s  

w i l l  be  i n t e r p r e t e d  i n  terms of L1, L2, L 
& - L a  LL 

and L4. 3 

To t h i s  end: 

I. Se t  V(T) - 0 ,  

Then i 

bu t  

s i n c e  V(T) = 0 and the  conduction medium is  assumed t o  be chemically homogeneous 

i n  equilibrium. 

Hence 
+ - +  
J E = L  * E  1 

or  
a &  

1 o = L  

-1 
where ?is the  e l e c t r i c a l  conductivity tensor  (ohm-m) 

+ 
11. Se t  JE = 0, then: 

(A.2.28) 

L - 
V(T) 

& 1 -  1 L1 q q )  - - L2 V'y) = + - 
T2 
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Defining the abso lu te  the rmoe lec t r i c  power of a medium by: 

+ -  
E =-a V(T) 

i t  is  seen  t h a t :  

T' - - -1 where (L1) i s  the inve r se  t enso r  t o  L Thus: 1' 

(A.2.29) 

d 

where Tis t h e  electrical r e s i s t i v i t y  t e n s o r  which is  t h e  i n v e r s e  t o  0 .  

+ 
111. S e t  JE = 0 but  3 and V(T) 0, then: Q 

(A.2.30) 

- - I * -  - 
-b (L1) L2 L4 

Q T2 T2 
J = ( q *  - - ) V(T) 

b u t  

(A. 2.31) 

Hence, the  thermal conduct iv i ty  (under t h e  usua l  open c i r c u i t  e lectr ical  

Conditions) is: 

1 1 - - - -  w a t t s  L* 

y: = - (L4 - L3 p L2) (x 
T2 

(A. 2.32) 

If t he  thermal conduct iv i ty  i s  measured i n  t h e  absence of a magnetic f i e l d ,  

then: 

(A.2.33) 

s i n c e  

which is i n f e r r e d  by the  Onsager r e c i p r o c i t y  cond i t ions  (see Eqs. A.2.27). 
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The o r i g i n a l  (and cor rec t )  statement of Onsager r ec ip roc i ty  requi res  

t ha t :  - a 
a(+B) = (-B) 

IC (+B) 5 I C ' ~ )  (-B) 
- ren (A.2.34) 

and imposes no symnretry r e l a t i o n s  on the  thermoelectric power tensor  when 

considered by i t s e l f .  

The important r e s u l t s  of t h i s  s e c t i o n  are presented below. The 

r e s u l t s  are s t a t e d  i n  index notation. The Eins te in  summation convention 

of s u d n g  over repeated ind ic i e s  ( i  = 1 t o  3) i s  observed. 

Electrical conductivity : 

e 
T h e m e  lect ri c powe r : 

when B - 0 

-1 
O i j  = 7 'ik (L2)kj 

(A. 2.36) 

(A. 2.37) 

Thermal conductivity: 

when B = 0 

(A. 2.39) 
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A.2.4 CALCULATION OF THE MACROSCOPIC TRANSPORT COEFFICIENTS FROM ELECTRONIC 
TRANSPORT THEORY 

The n e t  e lectr ical  conduction c u r r e n t  dens i ty  f o r  a s i n g l e  s p e c i e s  of  

charge carriers (holes  o r  e l e c t r o n s )  is  simply: 

o r  

(A. 2.40) 

- b +  + +  
where f ( k , r )  = f o ( k , r )  + g, the  s u b s c r i p t  BZ ind-ca tes  i n t e g r a - i o n  over t h e  

f i r s t  B r i l l o u i n  zone and, r e f e r r i n g  t o  Eq. A.2.5: 

(A.2.41) 

-b 
The s o l u t i o n  f o r  G has been given as Eq. A.2.18. 

Following Callen(8) and Nye"), t h e  thermal c u r r e n t  dens i ty  can be  

w r i t t e n  as: 

(A. 2.42) 

Here : 

-b j o u l e s  
Ju - t h e  t o t a l  energy cu r ren t  dens i ty :  

m -sec 

u = E t h e  equ i l ib r ium e l ec t rochemica l  p o t e n t i a l  : j o u l e s  

3 = par t i c l e  c u r r e n t  densi ty:  

- 
F' 

1 

m -sec 2 

NOW: 

l 

and 
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Hence, 
c 

. 
Now consider the form of g($): 

-* + + afo 
aE g(k) - G * v  - 

(A. 2.43) 

and from Eq. A.2.18: 

L L - C  E = -  1 P + q I - ; - * [ i i x  (3 * ? * # ) ]  
+-a - q? {ii X[(T*W) (3 x[P*r*W])]} (A. 2.18) 

By def in i t ion :  - 
(A. 2.14) P' = q V(t) - T ( E - 5 )  V(y) 1 

+ 
Thus, i t  i s  seen t h a t  g(d) and, therefore ,  J 

i n t o  two terms. 

and 3 each can be s p l i t  up 
E Q 

One t e r m  depends on V(i/q) and the o the r  on V(l/T). 

In  the experimental portion of t h i s  work, no thermal measurements were 

made i n  an applied magnetic f i e ld .  Hence, only the  zero magnetic f i e l d  

terms w i l l  be developed i n  the e x p l i c i t l y  temperature gradient dependent 

i n t e g r a l s  contained i n  sE and 3 
Before continuing, define : 

Q' 

I 

11 T - 
ml 

0 

\ O  

0 

22 T - 
m2 

0 33 

3 
- 
m : )  (A. 2.44) 

Note t h a t  8, Equation A.2.44, i s  e s s e n t i a l l y  the inverse  of B, 

Equation 5.19. 
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When expressed i n  index nota t ion :  

-r -b afo G v -  aE g(i3 = - 
a f o  

"hThj 'j % 
afo B P B  - - Vh'hkEkRm R j j m  aE 

B _ @  E B P B  
-t q2 Vh'hpEpnf n fk kllm R j jm 

(A. 2.45) 

(A. 2.46 ) 

'hk and 'hk where, once again,  t he  Eins te in  summation convention is  used. 

are elements of diagonal mat r ic ies .  

symbol which i s  defined as: 

F ina l ly ,  %Rm i s  the  permutation 

= E312 = + 1 €123 '231 

= -  1 '213 = €321 = '132 (A.2.47) 

E = 0 whenever two o r  more i n d i c i e s  are the  same. k Rm and 

I n  the  same notat ion:  

where V i s  the  j th  component of t he  real space gradient  opera tor ,  V. 1 
Using these developments, the  e l e c t r i c a l  and hea t  cu r ren t  d e n s i t i e s  become: 
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+4(1 V V T  i h 

4n BZ 

And 

BZ 4n 

From Eqs. A.2.25 and A.2.28: 

(A.2.49) 

(A.2.50) 

- 
'(JE)i a i j ( s )  vj(t) (L2)ij  v j  (A. 2.51) 

(A. 2.52) 
- 

(JqIi = (L3Iij  VJ( f )  + (L4Iij V j  

L P -  

As already mentioned, the magnetic f i e l d  dependences of L2, L3 a n d y  w i l l  

no t  be considered. This i s  because only the  magnetic f i e l d  dependence of 

aiJ (=(L1)ij) 

4 

en te r s  i n t o  the  experimental body of t h i s  work. 
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Exansing Eqs. A.2.49-50, i t  is  immediately seen  t h a t :  

(A. 2.53) 

(A. 2.54) 

(A.2.55) 

Notice t h a t  (L ) 

L2 and L3 which a r e  diagonal  i n  t h i s  model. 

= T(L3)ij which corresponds t o  Eq. A.2.27 for t he  matricies 
2 il 

F i n a l l y  wr i t ing :  

a i j (B)  = 'i"J i- ' i jk  Bk i- 'ijkll BkBQ 

i t  is  seen  t h a t :  

afo 
' 0  I -  A- 

3 I ViVhThj  = 
4n BZ 

i j  

afo 
'i j k  h k E e k m g j m z  

(A.2.56) 

(A. 2.57) 

(A. 2.58) 

and f i n a l l y :  

kf'nllm + 

4 E  

a i j k k  - %  4n [ 2 
BZ 

(A. 2.59) 

It should be  r eca l l ed  t h a t :  

1. q = + 1.601 x 1O-l'  coulomb for ho les  

q = - 1.601 x coulorrdj for e l e c t r o n s  
6 LI 

2. T and fi are diagonal  t enso r s .  
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A.2.5 ANALYTICAL EVALUATION OF THE TRANSPORT COEFFICIENTS 

The i n t e g r a l s  which express the  t ranspor t  coe f f i c i en t s  (Eqs. A.2.53, 54, 

55, 57, 58, and 59) now w i l l  be transformed i n t o  a formwhfch is  convenient 

f o r  numerical evaluation, 

be changed from k ,  a rec iproca l  la t t ice  vec tor ,  t o  E, the  energy of a hole  

The independent var iab le  i n  these i n t e g r a l s  w i l l  
+ 

o r  e lec t ron .  This transformation is e a s i l y  made since: 
-+ -+ 

1, E(k) i s  assumed t o  be a quadra t ic  form i n  k. 

2. The elements of the diagonal re laxa t ion  time tensor 

are taken t o  be functions of energy only. 

A l l  of the i n t e g r a l s  of i n t e r e s t  can be expressed i n  the form: 

where F(E) is some function of energy. Now: 

E(;) = 2 ( - k: 9 - k: + - k: 1 = (k i2  + k;2 -+ k i  2 ) 

"n m2 m3 

Here : 

In t h i s  new orthogonal coordinate system i n  rec iproca l  space: 

akl ak2 dc = dkldk2dk3 = - - - 
ak; ak; ak; 1 2 3 

ak3 &o&odko 

Also: 

(A.2.60) 

(A.2.61) 

(A.2.62) 

(A. 2.6 3) 

(A.2.64) 
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Thus : 

Con(-entrate on the in t eg ra l .  This cv be v r i t t e n  9s: 

d 
03 i r  

_II- 
ds k"kT 

/%'El .1 i I  
;iE 4 4  

; f "  2f" 
, k'k" P(E) dz;" = 1 dE - F(E) 

0 E= cons tan t 
: i j  
BZ 

where I P E ;  is the  a b s o l u t e  magnitude of t h e  g r a d i e n t  of E w i t h  ~ e s p c r ' t  t o  

t h e  new r e c i p r o c a l  space c o o r d i n a t e s ,  . ki 

Hence : 

The energy i n t e g r a l  has been written w l t h  l i m i t s  of zero ' t h . ,  i n i i t * L v .  

This assumes t h a t :  

I. The r e f e r e n c e  l e v e i  f o r  energy  (E=O) is taken a t  t h e  

b a d  edge. 

2. The ierrid-Dirac d i s t r i b u t i o n  f u n c t i o n ,  r e ,  cuts a f t  

t h e  Yntegro l  long  b e f o r e  t h e  energy band d e p a r t s  irom 

e l l i p s o i d a l  form o r  b e f o r e  o t h e r  bands b e g i n  t o  

c o n t r i b u t e  to t h e  conduct ion  p r o c e s s e s .  

Thus: Now, k '  and k" are o r t h o g o n a l  v e c t o r s  i f  i # j .  
j . .  i 

Thus : 
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L 

. 

d 

I s )  

(A. 2.66) 

The concent ra t ion  of charge c a r r i e r s  - h o l e s  or e l e c t r o n s  - is: 

n o r p  = j8 m19m3 [ fo(E)  fi dE p e r  (m)3 (A.2.67) 
2n2 .ii3 

I n  passing,  t h e  expression above de f ines  a dens i ty  of states e f f e c t i v e  

mass as: 

Combining Eqs. A.2.66 and 67 i t  is seen  t h a t  

where 

I = - <F(E)> 6 i j  
mi 

J O  
<F(E)> = m 

fo(E)  (E)112 dE 
0 

(A.2.68) 

(A.2.69) 

(A. 2.70) 

Using these  developments, i t  is seen tha t :  

(L21ij : Eq. A.2.53 : F(E) = qT (E-%)Tii 

(A. 2.71) 

(L3)ij  = - mi <q(E-EF)Tii> 6 i j  = - Ep "i <(E-EF)Tii> 6 i j  - 
(A. 2.72) 

n 

(L4)ij : Eq. A.2.55 : F(E) = - T(E-%)LTii 

2 
i j  

= pT <(E-EF) Tii> 6 2 
(L4)ij 5 - <-T(E-E ) Tii> 6 

F i j  m i  i m 
(A. 2.73) 
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And t h e  electrical conduc t iv i t i e s  are: 

2 
‘Iii 

U* : Eq. A.2.57 : F(E) = - 
i j  

n 

3 : Eq. A.2.58 : F(E) = q ‘Iii Eik,f i j j  
i j k  

a 

= - P  3 
‘ijk ma ‘q ‘Iii ‘ ik jB j j>  

d 
ijk ‘ i jk  m m < T i i T j j >  U 

i j  

Eq. A.2.59 i jk l l  * 
a 

and 

(A. 2.74) 

(A.2.75) 

(A. 2.76) 

LI-4 LL 

The t enso r s  L2, L3, L4, and uo a l l  have simple forms - they are diagonal  

second rank tensors .  Their elements w i l l  no t  be w r i t t e n  out  e x p l i c i t l y .  

uijk and 

r e spec t fv t ly .  The non zero elements are l i s t e d  below. 

t h e  elements of h igher  rank t enso r s  - rank 3 and 4 

: From Eq. A. 2.75 ‘i jk 
2 

=Dq-) 
213 mlm2 “Ill‘I22’ = - a  123 U 

3 
= - ‘Tl l f33’  U = -  

312 132 mlm3 

==- 
2 31 

U 

3 

321 m2m3 ‘T22T33> = - a  

From Eq. A.2.76 i jk l l  . U 

(A. 2.77) 
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c 

P 
1111 U 

a 
1122 U 

a 
1133 U 

P 

‘2211 

2222 U 

4 - PP 

4 - P4 

4 - P4 

= 
= ‘3333 

9 
L 

-11 ‘33> 

2 
ml m2 

“222 ‘ 33’ 

”22 m3 
n 

2 P9 a -  
3311 U 

m3 “2 

0 

(A. 2.78)  

1 4 <Tl lT22T33> 
1212 = ‘1313 = ‘2323 = 7 pq m m CI 

1 2 m3 

A.2.6 FORMULAS FOR THE INVERSION OF THE TRANSPORT COEFFICIENTS 
ry M 

Formulas f o r  L2(B=O), ?;;(B=O), T ( B = 0 )  and L1(B#O) - y ( B # O )  have been 

developed i n  the  previous sec t ion .  

Formulas which express  the rmoe lec t r i c  power, thermal conduct iv i ty ,  and 

t h e  electrical r e s i s t i v i t i e s  i n  terms of t h e s e  q u a n t i t i e s  are given below. 

The & s t e i n  summation convention is used. 

The rmoe le  c t ri c Power : 

When B = 0: 
+ 

(A. 2.36) 
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Thermal Conductivity:  

When B' = 0: 

L2)ki  (L2 A. 

Since,  by d e f i n i t i o n ,  t h e  e lectr ical  r e s i s t i v i t y  t e n s o r  i s  t h e  i n v e r s e  

t e n s o r  t o  t h e  e l e c t r i c a l  conduct iv i ty  tensor :  

Using the  low magnetic f i e l d  approximations : 

(x) = u i j  + u B + u (A.2.80) 4 i j P  P i4EP BQBP 
-+ 

P j k ( B )  'ik + 'jkrnBm + ' j k w  BmBn 

i n  Eq. A.2,79 i t  i s  seen t h a t :  

O f  

-1 
P r j  - 

Furthe m o r e  : 

And: 

A,2,7 SUMMARY OF ANALYTICAL EXPRESSIONS FOR EXPERIMENTALLY MEASURED 
TRANSPORT COEFFICIENTS 

(A. 2.81) 

(A. 2.82) 

, 

(A. 2.83) 

c 
The r e s u l t s  of the  preceding two s e c t i o n s  can be used t o  produce 

anallyrical expressions f o r  the  e l e c t r o n i c  t r a n s p o r t  parameters  which are 

usua l ly  determined by experiment. 
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The following r e s u l t s  have been derived f o r  a s i n g l e  energy band 

extremum which has general e l l i p so ids  f o r  constant energy surfaces i n  

rec iproca l  space. 

i n  the Cartesian coordinate system which i s  used. 

is  assumed t o  be a diagonal tensor i n  the same coordinate system. 

elements of the  diagonal relaxation time tensor  are assumed t o  be functions 

of energy only. 

f o  - fo(E) is  the  Fermi-Dirac d i s t r i b u t i o n  function. 

was the subjec t  of t h i s  inves t iga t ion ,  p denotes hole  density i n  the  

following and q = + 1.601 x loe1' coulomb. 

The e f f e c t i v e  mass tensor  is  assumed t o  be diagonal 

The re laxa t ion  time 

The 

These functions of energy are not necessar i ly  the same. 

Since p-type ZnSb 

ii T (E) T ii 

Recall t h a t  f o r  some function of energy, F(E): 

' 0  1" fo(E)  (E)ll2dE 
<F(E)> i 

0 

(A. 2.70) 

The Einstein summation convention is not  used i n  the  following formulas. 

The m e  lect  ri c Power: 

Hole Conduction Thermal Conductivity: 

w a t t s  
" i j  W O K  7 i >  1 2 

Tii> - 

Lorentz Numbers : 

(A. 2.84) 

(A. 2.85) 

(A. 2.86) 
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-% B = 0 E l e c t r i c a l  Resistivity: 

m. 
1 6 ohm-meter a 

“ j  pq2<Tii> i j  

Hal l  Coef f ic ien ts  : 

Magne to re s  is tance Coe f f i c i e n t s  : 

P O  ’iiii 

5 

2 
ohm-m 

weber 

2 
2 [ <‘ii’kk> - “ii’kk’ 

2 pii41 2 P”k <‘ > ii 

(A. 2.87) 

(A. 2.88) 

(A.2.89) 

The Eins te in  summation convention i s  not  used i n  the  above formulas. 

Unless required by the  Kronecker d e l t a ,  6 

according t o  any of the  six permutations of 1, 2 and 3. 

i # j # k and can be assigned 
i j ’  
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APPENDIX 3 

LONGITUDINAL MAGNETORESISTANCE OF AN 
ENERGY BAND OF GENERAL ELLIPSOIDAL FORM 

~ i . 3 ~ 1  CALCULATION OF THE MAGNETORESISTANCE 

The geometry of i n t e r e s t  is  shown below i n  Figure A.3.1. 

l 3  5,  ii 
d i r e c t  ion  

(Y1, Y 2  

P-2 

1 

cosines  
9 Y3) 

Fig. A. 3.1 Off Axis Longitudinal Magnetoresistance Geometry 

The e l e c t r i c  current  .density and magnetic f i e l d  dens i ty  vec tors  are assumed 

t o  be p a r a l l e l  ( longi tudinal  magnetoresistance) and d i r ec t ed  i n  a general  

o r i e n t a t i o n  with respect t o  the  1, 2 and 3 axes. The d i r e c t i o n  cosines  of 

t h i s  a r b i t r a r y  o r i en ta t ion  with respec t  t o  the  1, 2 and 3 axes are denoted 

by y l ,  y2 and y 

Thus, the  e l e c t r i c  cur ren t  dens i ty  and the  magnetic f i e l d  dens i ty  have 

respect ively.  3 

the  components : 

3: J1 = J y l ;  J2 = J y 2 ;  J3 = J y 3  

B: B1 = By1; B2 = By2; B3 = By3 

(A. 3.1) 

(A. 3.2) 

Let B - 0, then s ince the e l l i p s o i d  i s  being referenced t o  i t s  p r i n c i p a l  

coordinate  sys  t e m :  

(A. 3.3) 

. 

. 
Y 
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These components may be combined to  give the resu l tan t  e l e c t r i c  f i e ld :  

n n 

When B # 0; the r e su l t s  of Appendix 1 may be used t o  w r i t e :  

Y2B2) 
2 2  2 2  

= Jyl(';l + 5111 1 + '1122 2 + '1133 3 

Simi  1 ar ly  : 

Y2B2) 
2 2  2 2  

E2 Jy2(';2 +- '2222 y2B + '2211 'lB + '2233 3 

(A.3.4) 

(A.3.5) 

(A. 3.6 j 

And f ina l ly :  

Y2B2) 
2 2  2 2  

E3 = Jy3(p;3 + '3333 'gB '3322 2 + '3311 1 

Jy1(p312 y2B + 2p3131 Y 1 Y 3 B2) 

+ Jy2(p321 'lB + 2p3232 Y 2 Y 3 B2) (A. 3.7) 

For a general e l l i p so id ,  the on-axis longitudinal magnetoresistances are  zero. 

Hence 

'1111 = '2222 - '3333 = O (A. 3.8) 

Also, the t o t a l  electric f i e l d ,  with B # 0 is  given by: 

E = Y1 El + Y2 E2 + Y3 E3 (A. 3.9) 

And the change i n  the longitudinal electric f i e l d  which is  caused by the 

appl icat ion of the magnetic f i e ld  is: 

AE = E-Eo (A. 3.10) 
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I n s e r t i n g  Equations A.3.4, 5, 6 ,  7 ,  8 and 9 i n t o  Equation A.3.10 y i e l d s :  

AE E-EO 

J B ~  J B ~  
- E - P  

n n  ' ('2233 + '3322 * 4p2323 YLYL 2 3 

The H a l l  e f f e c t  terms do not  appear i n  the  above s ince  p - Pgik and they 
i j k  

have, been combined 
ijij and j i j i  

cancel i n  p a i r s .  Also, terms of the  form p 

s i n c e  they are equal. 

From Equations A.2.89 i t  is seen t h a t :  

and 

(A. 3.12) 

In  Equations A, 3.12 and 13, i, 3 ,  k range over 1, 2 ,  3 and i # 9 # k. Hence, 

i t  is seen t h a t  for  r e l axa t ion  times of the  forms ( r e f e r  t o  Chapter 5): 

(C). A s c a l a r  funct ion of energy: 

T = F(E) (A. 3.14) 

(D). A tensor  with a f ac to rab le  energy dependence - the  tensor  

being diagonal i n  the  same coordinate  system as the  e f f e c t i v e  

mass : 

(A. 3.15) 
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.. 
t he  longi tudina l  magnetoresistance of a general  e l l i p s o i d  valence band 

vanishes regard less  of the  d i r ec t ion  of the  e l e c t r i c  cur ren t  dens i ty  vector .  

As an example of the  use of Equations A.3.12 and A.3 .13  t o  ob ta in  t h i s  r e s u l t ,  

t he  second t e r m  on the  r i g h t  hand s i d e  of Equation Ae3.11 w i l l  be 

e x p l i c i t l y  evaluated f o r  a re laxa t ion  of t he  form "D" (Equation A.3.15 above): 

and 

4 

0 -  

4 
e 

'3311 '1133 

= -'2 [ <F(E)3> <F(E)2>2 - 
'1313 2pm2 <F(E)> <F(E)>3 

And the  claimed r e s u l t ,  (p1133 + '3311 + 4P1313) = 0, is  t rue .  

The bulk of the  experimental r e s u l t s ,  namely the  i s o t r o p i c  thermoelec t r ic  

power (Section 4.3.2), the  i s o t r o p i c  H a l l  c o e f f i c i e n t s  (Sect ion 4.5),  and the  

observed numerical symmetry i n  the magnetoresistance c o e f f i c i e n t s ,  a l l  imply 

t h a t  the  r e l axa t ion  time i s  of form "C" o r  "D" (Equations A,3.14 and 15,  

above). Thus, i t  is not  su rp r i s ing  t h a t  a nea r ly  zero longi tudina l  magneto- 

resistance was  observed on the  three  off-axis  samples inves t iga t ed  (Section 

4.7.3.2 and Figures 4.29 and 4.30). 

A.3.2 ESTIMATION OF THE NUMERICAL MAGNITUDES OF THE PLANAR HALL COEFFICIENTS 

Using the  above r e s u l t s ,  i t  is seen t h a t  

-%212 = '1122 = '2211 

-2p 131 3 = '1133 a '3311 

-2p2323 = '2233 '3322 

(A. 3.16) 

(A. 3.17) 

(A. 3.18) 

Using the  experinrental results of Table 4.5 and Sect ion 4.7.3.2, i t  is 
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seen t h a t  for :  

Eq. A.3.16: + 170 = 200 = 200 

and for :  

Eq. A.3.17: + 48 = 74 = 90 

The experimentally determined r e s u l t s  f o r  Equation A.3.17 are seen t o  contain 

q u i t e  a b i t  of experimental e r r o r .  This i s  wi th in  the  9 25% probable e r r o r  

assigned t o  the  plane Hall c o e f f i c i e n t s  and the  10% probable e r r o r  assigned 

t o  the  o t h e r  magnetoresis’tance coe f f i c i en t s .  

Using the  r e s u l t s  of  Table 4,5, p2323 can be est imated a s :  

1 ohm- c m  
2 = - 7 (130) = - 65 x 10” 

(ki logauss)  ’2323 

This es t ima te -has  been included i n  Table 4.5 

. 
I 
a 

L 

b 

m 
8 



. paffe: 

V. 

v i i i .  

4" 

10. 

11. 

16. 

4x. 

77. 

78. 

79 . 
101. 

110. 

125 . 
133. 

146. 

'168. 

176. 

Section 4 . 3 . 3  ~ppears  on Q. 79 

TABLE 5 t 1 COMPARISOrJ OF MAGNETORESTSTAi4CE RATIOS AED.. . . 
line 5:  ... E'iidgpan method. 

line 10: each of the planes sf easy cleavage. 

last line: ... a33 - 440 vV/% 

TABLE 1.1 (cant.) 1st l i ne  of secorrd row: 

0.61 2 0.03 (4.2*K) 

Add t o  first row of table: F P E C T N E  MASSES: 

ELLIPSOID SYMMETRY AXIS XK ';af' CXRECTION. 

read: 1 . 5 BIBLIOCRAPHX 

last line: ... (Section 3.2.2 and 'Ffgure 3 . 4 ) . . .  

Figure caption: Figure 4 . 3  

F i f t h  line froin bottw: ... (refer t o  Section 4.4)... 

a vo Logo 

lead: 4.3.3 TlBNUL CONDUCTIVITY MEASURE3ENTS 

9th line: ... a given breckee seem to  ... 
Second line a t  the very tup of' Ffgura 4.30: 

]EMCLQSES DATA POINTS FOR 
SILVPLE CV-25-1 

Lest line: . . transverse ma$cetoresista.nce results (77,3*K). 

4th line from bottom: ... axis system of the crystal. 

Eq. (A.2.2) scad: 3 = et;) VE 

Eq. (A.2.3) read: i * ( - I - '  8 = ... 
Eq. (A.2.6) road: k*Wak 

6th line: ... tiubacripts is also being introduced here: ... 

. -1 * 

4 2  ++++ 

7th line: ... assigned t o  the planar Hall ... 


